Proceedings Article | 15 May 2007
W. Slysz, M. Wegrzecki, J. Bar, P. Grabiec, M. Gorska, E. Rieger, P. Dorenbos, V. Zwiller, I. Milostnaya, O. Minaeva, A. Antipov, O. Okunev, A. Korneev, K. Smirnov, B. Voronov, N. Kaurova, G. Gol'tsman, J. Kitaygorsky, D. Pan, A. Pearlman, A. Cross, I. Komissarov, Roman Sobolewski
Proc. SPIE. 6583, Photon Counting Applications, Quantum Optics, and Quantum Cryptography
KEYWORDS: Sensors, Photons, Quantum efficiency, Superconductors, Receivers, Single photon detectors, Picosecond phenomena, Single mode fibers, Helium, Avalanche photodetectors
We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype
experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering
stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast and efficient detection of visible to nearinfrared
photons with almost negligible dark counts. Our latest devices are pigtailed structures with coupling between
the SSPD structure and a single-mode optical fiber achieved using a micromechanical photoresist ring placed directly
over the meander. The above arrangement withstands repetitive thermal cycling between liquid helium and room
temperature, and we can reach the coupling efficiency of up to ~33%. The system quantum efficiency, measured as the
ratio of the photons counted by SSPD to the total number of photons coupled into the fiber, in our early devices was
found to be around 0.3 % and 1% for 1.55 &mgr;m and 0.9 &mgr;m photon wavelengths, respectively. The photon counting rate
exceeded 250 MHz. The receiver with two SSPDs, each individually biased, was placed inside a transport, 60-liter
liquid helium Dewar, assuring uninterrupted operation for over 2 months. Since the receiver's optical and electrical
connections are at room temperature, the set-up is suitable for any applications, where single-photon counting capability
and fast count rates are desired. In our case, it was implemented for photon correlation experiments. The receiver
response time, measured as a second-order photon cross-correlation function, was found to be below 400 ps, with
timing jitter of less than 40 ps.