InP-based quantum dot (QD) laser devices emitting at 1.3 µm were realized by incorporating a GaAs nucleation layer underneath the InAs QD layers. A good carrier confinement while retaining the waveguiding properties is achieved by embedding the QDs in In0.528Al0.371Ga0.101As. Length dependent P-I characteristics yielded static parameters, which were comparable to static parameters obtained for InP-based lasers emitting at 1.55 µm. Additionally, temperature dependent measurements were conducted and evaluated. The lasers show ground mode lasing up to high operation temperatures with good temperature stability of the threshold current density and external quantum efficiency.
The small and large signal responses of InP-based 1.55 μm high-speed quantum dot (QD) lasers with and without tunnel-injection (TI) quantum well (QW) and/or p-type doping in the active region (incorporating nominally identical QDs) were designed, manufactured and compared. The structures were grown by a molecular beam epitaxy system equipped with group-V valved cracker cells. In all cases, the active region consisted of six QD or TI-QD structures, which were embedded in InAlGaAs barriers lattice matched to InP. The InGaAs TI-QWs were separated by a thin InAlGaAs tunnel barrier from the InAs QDs. The laser structures were processed into ridge waveguide lasers and analyzed. The results show, that the bandwidth and maximum data rates were reduced by incorporation of TI-QWs. P-doping resulted in slightly worse performance of the simple QD laser, but in an improvement of the TI QD laser. Furthermore, the large signal response of the tunneling injection QD laser is one of the first reports of digital modulation of such a laser. An optimization of the doping profile is promising to further improve the laser performance over the undoped counterparts.
A comparison between QD lasers with and without tunnel-injection QW designs was performed. In both cases, six layers of a QD or TI-QD design were grown by molecular beam epitaxy equipped with group-V valved cracker cells. The InAs QDs are embedded in InAlGaAs barriers lattice matched to InP. The TI-QW consists of InGaAs separated by a thin InAlGaAs tunnel barrier. The lasers were processed into broad area and ridge waveguide lasers. Both laser designs exhibited high modal gain values in the range of 10-15 cm−1 per dot layer. The static and dynamic device properties of the different QD laser designs were measured and compared against each other.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.