KEYWORDS: Data modeling, Brain, Neuroimaging, Performance modeling, Machine learning, Data centers, Magnetic resonance imaging, Solid modeling, Medical research, Feature extraction
Limited access to medical datasets, due to regulations that protect patient data, is a major hinderance to the development of machine learning models for computer-aided diagnosis tools using medical images. Distributed learning is an alternative to training machine learning models on centrally collected data that solves data sharing issues. The main idea of distributed learning is to train models remotely at each medical center rather than collecting the data in a central database, thereby avoiding sharing data between centers and model developers. In this work, we propose a travelling model that performs distributed learning for biological brain age prediction using morphological measurements of different brain structures. We specifically investigate the impact of nonidentically distributed data between collaborators on the performance of the travelling model. Our results, based on a large dataset of 2058 magnetic resonance imaging scans, demonstrate that transferring the model weights between the centers more frequently achieves results (mean age prediction error = 5.89 years) comparable to central learning implementations (mean age prediction error = 5.93 years), which were trained using the data from all sites hosted together at a central location. Moreover, we show that our model does not suffer from catastrophic forgetting, and that data distribution is less important than the number of times that the model travels between collaborators.
Depending on the application, multiple imaging modalities are available for diagnosis in the clinical routine. As a result of this, repositories of patient scans often contain mixed modalities. This poses a challenge for image analysis methods, which require special modifications to work with multiple modalities. This is especially critical for deep learning-based methods, which require large amounts of data. Within this context, a typical example is follow-up imaging in acute ischemic stroke patients, which is an important step in determining potential complications from the evolution of a lesion. In this study, we addressed the mixed modalities issue by translating unpaired images between two of the most relevant follow-up stroke modalities, namely non-contrast computed tomography (NCCT) and fluid-attenuated inversion recovery (FLAIR) MRI. For the translation, we use the widely used cycle-consistent generative adversarial network (CycleGAN). To preserve stroke lesions after translation, we implemented and tested two modifications to regularize them: (1) we use manual segmentations of the stroke lesions as an attention channel when training the discriminator networks, and (2) we use an additional gradient-consistency loss to preserve the structural morphology. For the evaluation of the proposed method, 238 NCCT and 244 FLAIR scans from acute ischemic stroke patients were available. Our method showed a considerable improvement over the original CycleGAN. More precisely, it is capable to translate images between NCCT and FLAIR while preserving the stroke lesion’s shape, location, and modality-specific intensity (average Kullback-Leibler divergence improved from 2,365 to 396). Our proposed method has the potential of increasing the amount of available data used for existing and future applications while conserving original patient features and ground truth labels.
The efficacy of stroke treatments is highly time-sensitive, and any computer-aided diagnosis support method that can accelerate diagnosis and treatment initiation may improve patient outcomes. Within this context, lesion identification in MRI datasets can be time consuming and challenging, even for trained clinicians. Automatic lesion localization can expedite diagnosis by flagging datasets and corresponding regions of interest for further assessment. In this work, we propose a deep reinforcement learning agent to localize acute ischemic stroke lesions in MRI images. Therefore, we adapt novel techniques from the computer vision domain to medical image analysis, allowing the agent to sequentially localize multiple lesions in a single dataset. The proposed method was developed and evaluated using a database consisting of fluid attenuated inversion recovery (FLAIR) MRI datasets from 466 ischemic stroke patients acquired at multiple centers. 372 patients were used for training while 94 patients (20% of available data) were employed for testing. Furthermore, the model was tested using 58 datasets from an out-of-distribution test set to investigate the generalization error in more detail. The model achieved a Dice score of 0.45 on the hold-out test set and 0.43 on images from the out-of-distribution test set. In conclusion, we apply deep reinforcement learning to the clinically well-motivated task of localizing multiple ischemic stroke lesions in MRI images, and achieve promising results validated on a large and heterogeneous collection of datasets.
Deep learning in medical imaging typically requires sensitive and confidential patient data for model training. Recent research in computer vision has shown that it is possible to recover training data from trained models using model inversion techniques. In this paper, we investigate the degree to which encoder-decoder like architectures (U-Nets, etc) commonly used in medical imaging are vulnerable to simple model inversion attacks. Utilising a database consisting of 20 MRI datasets from acute ischemic stroke patients, we trained an autoencoder model for image reconstruction and a U-Net model for lesion segmentation. In the second step, model inversion decoders were developed and trained to reconstruct the original MRIs from the low dimensional representation of the trained autoencoder and the U-Net model. The inversion decoders were trained using 24 independent MRI datasets of acute stroke patients not used for training of the original models. Skull-stripped as well as the full original datasets including the skull and other non-brain tissues were used for model training and evaluation. The results show that the trained inversion decoder can be used to reconstruct training datasets after skull stripping given the latent space of the autoencoder trained for image reconstruction (mean correlation coefficient= 0.49), while it was not possible to fully reconstruct the original image used for training of a segmentation task UNet (mean correlation coefficient=0.18). These results are further supported by the structural similarity index measure (SSIM) scores, which show a mean SSIM score of 0.51± 0.14 for the autoencoder trained for image reconstruction, while the average SSIM score for the U-Net trained for the lesion segmentation task was 0.28±0.12. The same experiments were then conducted on the same images but without skull stripping. In this case, the U-Net trained for segmentation shows significantly worse results, while the autoencoder trained for image reconstruction is not affected. Our results suggest that an autoencoder model trained for image compression can be inverted with high accuracy while this is much harder to achieve for a U-Net trained for lesion segmentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.