Brain hemorrhage (BH) is a severe type of stroke resulting in high mortality and morbidity. Detection and diagnosis of BH is commonly performed using neuroimaging tools such as Computed Tomography (CT). We compare and contrast symmetry-aware, symmetry-naive feature representations and their combination for the detection of BH using CT imaging. One of the proposed architectures, e-DeepSymNet, achieves AUC 0.99 [0.97- 1.00] for BH detection. An analysis of the activation values shows that both symmetry-aware and symmetry-naive representations offer complementary information with symmetry-aware representation naive contributing 20% towards the final predictions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.