In recent years, ultracold atoms trapped in periodic lattices have attracted much attention as a simulator for condensed matter systems because of the ability to manipulate and precisely control the ultracold atoms. Periodic arrays of magnetic microtraps patterned on a magnetic film provide a potential complementary tool to conventional optical lattices for trapping arrays of ultracold atoms. Compared to optical lattices, magnetic lat- tices allow a higher degree of design flexibility by allowing almost arbitrary lattice geometries and they also allow lower technical noise and state-selective trapping of atoms. This paper reports the trapping of ultracold 87Rb atoms in 0.7 μm-period triangular and square magnetic lattices integrated on an atom chip as a step towards using magnetic lattices as a new platform for simulating condensed matter and quantum many-body phenomena in nontrivial lattice geometries.
Nanotextured surfaces which have surface features spanning 10-100 nm in length and height scales are among the most promising for surface enhanced Raman scattering/spectroscopy (SERS). Randomness of the feature sizes and surface morphology of such sensors brings an added benefit of spectrally broadband action and, consequently, augmented SERS intensity. Surfaces which are most promising for high sensitivity yet cost efficient for large scale production are overviewed with black CuO, which is made by chemical oxidation of Cu foil, as a representative example. Application potential and challenges to establishing quantitative SERS measurements are outlined.
Pyramidal silicon nanospikes, termed black-Si (b-Si), with controlled height of 0.2 to 1 μm, were fabricated by plasma etching over 3-in wafers and were shown to act as variable density filters in a wide range of the IR spectrum 2.5 to 20 μm, with transmission and its spectral gradient dependent on the height of the spikes. Such variable density IR filters can be utilized for imaging and monitoring applications. Narrow IR notch filters were realized with gold mesh arrays on Si wafers prospective for applications in surface-enhanced IR absorption sensing and “cold materials” for heat radiation into atmospheric IR transmission window. Both types of filters for IR: spectrally variable and notch are made by simple fabrication methods.
Photo-thermal - to - electrical converter is demonstrated by using a commercial Peltier Bi-Te element with a hot contact made out of nanotextured Si (black-Si). Black-Si with colloidal Au nanoparticles is shown to further increase the efficiency of thermal-to-electrical conversion. Peculiarities of heat harvesting using black-Si with plasmonic Au nanoparticles at different gold densities are analyzed. Solar radiation absorption and electric field enhancement in plain and Au nanoparticle decorated black-Si was simulated using finite difference time domain (FDTD) method. Thermal conduction in nanotextured black-Si was explained using phonon Monte-Carlo simulations at the nanoscale. Strategies for creating larger thermal gradient on Peltier element using nanotextured light absorbers is discussed.
Plasmonics and nanoscale antennas have been intensively investigated for sensors, metasurfaces and optical trapping where light control at the nanoscale enables new functionalities. To confine and manipulate the light in tiny spaces sub-wavelength antennas should be used with dimensions from micro- to nano-meters and are still challenging to make. Direct fabrication/modification of nanostructures using focused ion beam (FIB) milling is demonstrated for several types of antennas. Arrays of identical nanoparticles were fabricated in a single step by (i) milling gold films or (ii) by modifying structures which were already defined by electron beam or mask projection lithography. Direct FIB writing enables to exclude resist processing steps, thus making fabrication faster and simpler. Sensor areas of 25x25 μm2 of densely packed nanoparticles separated by tens-of-nanometers were fabricated in half an hour (103 μm2/h throughput at 90 nm resolution). Patterns of chiral nanoparticles by groove inscription is demonstrated. The processing speed and capability to mill complex 3D surfaces due to depth of focus not compromised over micrometers length, makes it possible to reach sub-50 nm resolution of direct write. FIB technology is practical for emerging applications in nano-fabrication/photonic/fluidic/magnetic applications.
Rapid and cost effective fabrication of nano-textured surfaces of CuO and Cu2O by chemical bath process was used to fabricated large surface areas with cross sections in centimeters. Through chemical etching and oxidation induced nano-texturation Cu foils are rendered black and their surface area is increased by two orders of magnitude. Magnetronic Au sputtering was used to coat the nano-textured CuxO features with nano-granular metal films which were found to be conformal for the range of 5-50 nm layer thicknesses. The Au coated substrates of CuxO were tested for surface enhanced Raman scattering (SERS) performance and showed one of the best sensitivity enhancements when compared with other nano-textured surfaces. Application potential of the black-Cu2O for SERS sensing and for solar cell applications is discussed.
Electron and ion beam lithographies were used to fabricate and/or functionalize large scale - millimetre footprint - micro-optical elements: coupled waveguide-resonator structures on silicon-on-insulator (SOI) and THz antennas on low temperature grown LT-GaAs. Waveguide elements on SOI were made without stitching errors using a fixed beam moving stage approach. THz antennas were created using a three-step litography process. First, gold THz antennas defined by standard mask projection lithography were annealed to make an ohmic contact on LT-GaAs and post-processing with Ga-ion beam was used to define nano-gaps and inter digitised contacts for better charge collection. These approaches show the possibility to fabricate large footprint patterns with nanoscale precision features and overlay accuracy. Emerging 3D nanofabrication trends are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.