In a study on one patient during hemodialysis, we used near-infrared spectroscopy (NIRS) to measure coherent oscillations of cerebral concentrations of oxyhemoglobin ([HbO2]), deoxyhemoglobin ([Hb]), and total-hemoglobin ([HbT]) induced by systemic oscillations in mean arterial pressure (MAP) at a frequency of 0.07 Hz. During hemodialysis, we observed that the phase of [Hb] versus [HbO2] becomes less negative, whereas the phase of [HbT] versus MAP becomes more negative. By applying a quantitative hemodynamic model, we assign these phase changes to an increase in venous blood transit time and a less effective cerebral autoregulation during the hemodialysis process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.