KEYWORDS: Data modeling, Education and training, Diffusion, Statistical modeling, Simulations, Denoising, Sampling rates, Throat, Magnetic resonance imaging, 3D modeling
Generative models have been used to combat medical image scarcity by generating new samples to increase the size of the training data. The hypothesis of this paper is that Denoising Diffusion Probabilistic Models (DDPM), have the ability to synthesize high quality flow images and potentially obviate the need to rely on time-consuming CFD simulations. As a first step, in this paper, we concentrate on data generation at only the peak flow rate of the simulation and propose a DDPM that, with high accuracy, can generate velocity fields for many unseen flow rates in a fixed in-vitro phantom geometry with rigid walls modeling a vascular stenosis.
The use of low-dose Computed Tomography (CT) has been effective in reducing the mortality rate due to lung cancer. With the rapid increase in the number of studies, computer aided diagnosis (CAD) systems need to be developed to further assist radiologists in detecting lung nodules and determining their malignancy in CT scans. An important factor for determining malignancy in a sequential of scans is the rate of change and growth. In the past, deformable registration techniques have been widely applied to assess longitudinal change in data. In this paper we propose a new deep learning system based on Convolutional Neural Networks and U-Net architecture to assess longitudinal change in CT scans for a nodule over time. The VoxelMorph network [1] has been effective in deformable registration of brain MRIs. This paper extends the application of VoxelMorph to registration of lung nodules in multiple time point scans based on a subset of data from the National Lung Screening Trial (NLST), referred to as NLSTx. VoxelMorph has been modified to include both a sum-of-squared-differences (SSD) image similarity loss and spatial domain regularization to reduce the number of fold-overs and non-invertible transformations, indicated by the presence of negative Jacobian determinants. The network effectively performs 3D Deformable Registration of longitudinal nodule CT scans, providing the means to quantify nodule growth over time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.