The rapid development of a variety of molecular contrast agents makes the multimodality bioimaging highly attractive towards higher resolution, more sensitive, informative diagnosis. The key lies in the development of facile material synthesis that allows the integration of multiple contrast agents, ideally in a way that each of the components should be logically assembled to maximize their performances. Here, we report the one-pot programmable growth of multifunctional heterogeneous nanocrystal with tunable size, shape, composition, and properties. We demonstrated a facile one-pot hot-injection method to enable the highly selectively controlled growth of different sodium lanthanide fluoride nanomaterials in either longitudinal or transversal directions with atomic scale precision. This technique allows the upconversion luminescence signal, MRI signal and x-ray signal logically integrated and optimized within one single versatile nanoplatform for multimode bioimaging. These findings suggest that the facile strategy developed here have the promising to get the desired heterogeneous nanocrystals as an all-in-one contrast agent for integrated and self-correlative multimodal bioimaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.