Various electro-optic nonlinear organic crystals have been recently developed and successfully used as very efficient materials for the generation and detection of broadband terahertz (THz) waves due to their large second-order optical nonlinearities and excellent phase matching characteristics. In the present talk, some of newly developed highly nonlinear organic crystals, which can be applied for efficient ultra-broadband THz wave generation up to ~10 THz by near-infrared pumping, are introduced. Additionally, two approaches for suppressing phonon-mode absorption, leading to strong modulations of the THz spectra generated in most organic crystals, are discussed.
Due to the relatively weak birefringence of natural materials in terahertz regime, metasurfaces have been proposed for compact terahertz phase modulators since they show effectively strong birefringence only with ultrathin structures. However, previous designs of metasurface show limited phase modulation reaching only up to the quarter-wavelength phase, and there has been no single metasurface design that works for a terahertz half-waveplate. Here, we present a metasurface that modulates the phase variably up to 180 degrees. The phase modulation is achieved by a hyperbolic metasurface composed of periodically arrayed rectangular metal rings with different periods for horizontal and vertical axis. By controlling each period, we show that our hyperbolic metasurface can possess large positive and negative permittivity values for horizontal and vertical axis and the phase shift can reach up to the 180 degrees. To check the validity of our design, we fabricate reconfigurable metasurface films and demonstrate the phase modulation 90 to 180 degrees. All results show good agreement with numerical simulation results.
We manufactured an array of three angstrom-wide, five millimeter-long van der Waals gaps of copper-graphene-copper composite, in which unprecedented nonlinearity was observed. To probe and manipulate van der Waals gaps with long wavelength electromagnetic waves such as terahertz waves, one is required to fabricate vertically oriented van der Waals gaps sandwiched between two metal planes with an infinite length in the sense of being much larger than any of the wavelengths used. By comparison with the simple vertical stacking of metal-graphene-metal structure, in our structure, background signals are completely blocked enabling all the light to squeeze through the gap without any strays.
When the angstrom-sized van der Waals gaps are irradiated with intense terahertz pulses, the transient voltage across the gap reaches up to 5 V with saturation, sufficiently strong to deform the quantum barrier of angstrom gaps. The large transient potential difference across the gap facilitates electron tunneling through the quantum barrier, blocking terahertz waves completely. This negative feedback of electron tunneling leads to colossal nonlinear optical response, a 97% decrease in the normalized transmittance.
Our technology for infinitely long van der Waals gaps can be utilized for other atomically thin materials than single layer graphene, enabling linear and nonlinear angstrom optics in a broad spectral range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.