The LSST Camera is the sole instrument for the Vera C. Rubin Observatory and consists of a 3.2 gigapixel focal plane mosaic with in-vacuum controllers, dedicated guider and wavefront CCDs, a three-element corrector whose largest lens is 1.55m in diameter, six optical interference filters covering a 320–1050 nm bandpass with an out-of-plane filter exchange mechanism, and camera slow control and data acquisition systems capable of digitizing each image in 2 seconds. In this paper, we describe the verification testing program performed throughout the Camera integration and results from characterization of the Camera’s performance. These include an electro-optical testing program, measurement of the focal plane height and optical alignment, and integrated functional testing of the Camera’s major mechanisms: shutter, filter exchange system and refrigeration systems. The Camera is due to be shipped to the Rubin Observatory in 2024, and plans for its commissioning on Cerro Pachon are briefly described.
The LSST Camera is a complex, highly integrated instrument for the Vera C. Rubin Observatory. Now that the assembly is complete, we present the highlights of the LSST Camera assembly: successful installation of all Raft Tower Modules (RTM) into the cryostat, integration of the world’s largest lens with the camera body, and successful integration and testing of the shutter and filter exchange systems. While the integration of the LSST Camera is a story of success, there were challenges faced along the way which we present: component failures, late design changes, and facility infrastructure issues.
The Rubin Observatory Commissioning Camera (ComCam) is a scaled down (144 Megapixel) version of the 3.2 Gigapixel LSSTCam which will start the Legacy Survey of Space and Time (LSST), currently scheduled to start in 2024. The purpose of the ComCam is to verify the LSSTCam interfaces with the major subsystems of the observatory as well as evaluate the overall performance of the system prior to the start of the commissioning of the LSSTCam hardware on the telescope. With the delivery of all the telescope components to the summit site by 2020, the team has already started the high-level interface verification, exercising the system in a steady state model similar to that expected during the operations phase of the project. Notable activities include a simulated “slew and expose” sequence that includes moving the optical components, a settling time to account for the dynamical environment when on the telescope, and then taking an actual sequence of images with the ComCam. Another critical effort is to verify the performance of the camera refrigeration system, and testing the operational aspects of running such a system on a moving telescope in 2022. Here we present the status of the interface verification and the planned sequence of activities culminating with on-sky performance testing during the early-commissioning phase.
Electro-optical testing and characterization of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Camera focal plane, consisting of 205 charge-coupled devices (CCDs) arranged into 21 stand-alone Raft Tower Modules (RTMs) and 4 Corner Raft Tower Modules (CRTMs), is currently being performed at the SLAC National Accelerator Laboratory. Testing of the camera sensors is performed using a set of custom-built optical projectors, designed to illuminate the full focal plane or specific regions of the focal plane with a series of light illumination patterns: the crosstalk projector, the flat illuminator projector, and the spot grid projector. In addition to measurements of crosstalk, linearity and full well, the ability to project realistically-sized sources, using the spot grid projector, makes possible unique measurements of instrumental signatures such as deferred charge distortions, astrometric shifts due to sensor effects, and the brighter-fatter effect, prior to camera first light. Here we present the optical projector designs and usage, the electro-optical measurements and how these results have been used in testing and improving the LSST Camera instrumental signature removal algorithms.
The Integration and Verification Testing and characterization of the expected performance of the Large Synoptic Survey Telescope (LSST) Camera is described. The LSST Camera will be the largest astronomical camera ever constructed, featuring a 3.2 Gpixel focal plane mosaic of 189 CCDs. In this paper, we describe the verification testing program developed in parallel with the integration of the Camera, and the results from our performance characterization of the Camera. Our testing program includes electro-optical characterization and CCD height measurements of the focal plane, at several steps during integration, as well as a complete functional and characterization program for the finished focal plane. It also includes a suite of functional tests of the major Camera mechanisms: shutter, filter exchange system and thermal control. Finally, we expect to test the fully assembled Camera prior to its scheduled completion and delivery to the LSST observatory in early calendar 2021.
The Large Synoptic Survey Telescope, under construction in Chile, is an 8.4 m optical survey telescope with a dedicated 3.2 Giga-pixel camera. The design and construction of the camera is spearheaded at SLAC National Accelerator Laboratory and here we present a general overview of the camera integration and test activities. An overview of the methodologies used for the planning and management of this subsystem will be given, along with a high-level summary of the status of the major pieces of I&T hardware. Finally a brief update will be given on the current state of the LSST Camera integration and testing program.
We present the mechanical device used to install the Raft Tower Modules (RTMs) into the cryosat of the camera for the Large Synoptic Survey Telescope (LSST). In an RTM, the charge-coupled devices (CCDs) are packaged into a 3 x 3 Raft Sensor Assembly (RSA) and coupled to a Raft Electronics Crate (REC). An RTM weighs ~10 kg, is roughly 500 mm tall, and has a 126.5 mm-square footprint at the CCDs. The grid array which supports the RTM in the cryostat has a center-to-center distance of 127 mm. One of the key challenges for installing the RTMs in the 500 μm gap between CCDs of adjacent modules - contact between adjacent CCDs is strictly forbidden.
The Bench for Optical Testing (BOT) is a test stand that will be used for metrology and optical testing of the Large Synoptic Survey Telescope (LSST) Camera CCD sensors, immediately after the integration step where the sensors are installed into the Cryostat to form the LSST’s 3.2 gigapixel, 640mm diameter focal plane. The BOT uses existing methods to economically verify sensor performance, including measurement of focal plane flatness, CCD sensor spacing, gain stability, cross-talk, flat field images, response in each filter band, and dark level. This paper describes the requirements, design, and preliminary test results for the BOT test equipment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.