A technique for assessing the impact of lossy wavelet-based image compression on signal detection tasks is presented. A medical image’s value is based on its ability to support clinical decisions such as detecting and diagnosing abnormalities. Image quality of compressed images is, however, often stated in terms of mathematical metrics such as mean square error. The presented technique provides a more suitable measure of image degradation by building on the channelized Hotelling observer model, which has been shown to predict human performance of signal detection tasks in noise-limited images. The technique first decomposes an image into its constituent wavelet subband coefficient bit-planes. Channel responses for the individual subband bit-planes are computed, combined,and processed with a Hotelling observer model to provide a measure of signal detectability versus compression ratio. This allows a user to determine how much compression can be tolerated before signal detectability drops below a certain threshold.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.