Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to survey the atmospheres of known exoplanets through transit spectroscopy. The launch is scheduled for 2029. The scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband 0.5-7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully aluminium design to tolerate thermal variations to avoid impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m (the major axis), followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure hinges supports the primary mirror on one of the optical bench sides. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Critical Design Review; the fabrication of the structural and engineering models has started; some components, i.e., the primary mirror and its mounting system are undergoing further qualification activities. This paper aims to update the scientific community on the progress concerning the development, manufacturing and qualification activity of the ARIEL Telescope Assembly.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is ESA’s M4 mission of the “Cosmic Vision” program, with launch scheduled for 2029. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Ariel is based on a 1 m class telescope optimized for spectroscopy in the waveband between 1.95 and 7.8 µm, operating at cryogenic temperatures in the range 40–50 K. The Ariel Telescope is an off-axis, unobscured Cassegrain design, with a parabolic recollimating tertiary mirror and a flat folding mirror directing the output beam parallel to the optical bench. The secondary mirror is mounted on a roto-translating stage for adjustments during the mission. The mirrors and supporting structures are all realized in an aerospace-grade aluminum alloy T6061 for ease of manufacturing and thermalization. The low stiffness of the material, however, poses unique challenges to integration and alignment. Care must be therefore employed when designing and planning the assembly and alignment procedures, necessarily performed at room temperature and with gravity, and the optical performance tests at cryogenic temperatures. This paper provides a high-level description of the Assembly, Integration and Test (AIT) plan for the Ariel telescope and gives an overview of the analyses and reasoning that led to the specific choices and solutions adopted.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the fourth medium-class mission (M4) of the ESA’s Cosmic Vision Program. Its launch is planned for 2029. Ariel will observe a large and well selected sample of transiting gas giants, neptunes and super-earths around a wide range of host star types, with the objective to study planetary atmospheres and to understand composition and evolving processes of the planetary systems. A Structural, Thermal, and Optical Performance (STOP) analysis is conducted at Payload level to estimate the thermo-elastic induced degradation of the system performance for a number of selected environmental load cases. In particular, this document presents the general approach followed and the results of the optical design analysis performed to predict the performance of the Ariel Telescope Assembly for the in-flight operational cases during Cycle C-1.
PROBA-3 is a mission devoted to the in-orbit demonstration (IOD) of precise formation flying (F2) techniques and technologies for future ESA missions. The mission includes two spacecrafts. One of them will act as an external occulter for scientific observations of the solar corona from the other spacecraft, which will hold the ASPIICS coronagraph instrument, under CSL (Centre Spatial de Liège) responsibility. The ASPIICS instrument on PROBA-3 looks at the solar corona through a refractive telescope, able to select 3 different spectral bands: Fe XIV line @ 530.4nm, He I D3 line @587.7nm, and the white-light spectral band [540;570nm]. The external occulter being located at ~ 150 meters from the instrument entrance, will allow ASPIICS to observe the corona really close to the solar limb, probably closer than any internally or externally occulted coronagraph ever observed. CSL is responsible for the optical design, integration, testing and validation of the complete ASPIICS instrument. The instrument qualification model (QM) underwent a full qualification campaign at CSL, providing confidence and assuring the performances of the coronagraph design. During the year 2021, the flight model (FM) was also successfully integrated and tested at CSL. The calibration performed at INAF during September 2021 was the last step to achieve before the instrument delivery to ESA end of 2021. This paper will present the results of the qualification campaign, the optical performances of the flight instrument and the calibration campaign. Several challenges were faced during these campaigns, amongst which are detailed the alignment of the focal plane, the alignment measurement during environmental testing and setup constraints during the calibration. The successful validation of the instrument and its final acceptance is demonstrated.
Ariel (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is an ESA M class mission aimed at the study of exoplanets. The satellite will orbit in the lagrangian point L2 and will survey a sample of 1000 exoplanets simultaneously in visible and infrared wavelengths. The challenging scientific goal of Ariel implies unprecedented engineering efforts to satisfy the severe requirements coming from the science in terms of accuracy. The most important specification – an all-Aluminum telescope – requires very accurate design of the primary mirror (M1), a novel, off-set paraboloid honeycomb mirror with ribs, edge, and reflective surface. To validate such a mirror, some tests were carried out on a prototype – namely Pathfinder Telescope Mirror (PTM) – built specifically for this purpose. These tests, carried out at the Centre Spatial de Liège in Belgium – revealed an unexpected deformation of the reflecting surface exceeding a peek-to-valley of 1µm. Consequently, the test had to be re-run, to identify systematic errors and correct the setting for future tests on the final prototype M1. To avoid the very expensive procedure of developing a new prototype and testing it both at room and cryogenic temperatures, it was decided to carry out some numerical simulations. These analyses allowed first to recognize and understand the reasoning behind the faults occurred during the testing phase, and later to apply the obtained knowledge to a new M1 design to set a defined guideline for future testing campaigns.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully-aluminum design to tolerate thermal variations avoiding impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure-hinges supports the primary mirror on one side of the optical bench. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Preliminary Design Review to start the fabrication of the structural model; some components, i.e., the primary mirror, its mounting system and the refocusing mechanism, are undergoing further development activities to increase their readiness level. This paper describes the design and development of the ARIEL Telescope Assembly.
PROBA-3 is a mission devoted to the in-orbit demonstration (IOD) of precise formation flying (F²) techniques and technologies for future ESA missions. The mission includes two spacecraft. One of them will act as an external occulter for scientific observations of the solar corona from the other spacecraft, which will hold the ASPIICS coronagraph instrument, under CSL responsibility.
The ASPIICS instrument on PROBA-3 looks at the solar corona through a refractive telescope, able to select 3 different spectral bands: Fe XIV line @ 530.4nm, He I D3 line @587.7nm, and the white-light spectral band [540;570nm]. The external occulter being located at ~ 150 meters from the instrument entrance, will allow ASPIICS to observe the corona really close to the solar limb, probably closer than any internally or externally occulted coronagraph ever observed.
This paper will present the straylight model and analyses carried out by CSL. A first specificity of the analysis is that the scene on the useful Field of View (FOV) is the solar corona which has a brightness dynamic range as high as 103 between the close corona, close to 1 solar radius (Rsun), and the “distant” corona around 3RSun. The specifications are very stringent for this type of instrument. A consensus was found and will be presented regarding the expected straylight within the FOV. It will also be shown that to achieve realistic estimations it is required to take into account the exact location of the created straylight as well as the entrance field.
The second specificity that had to be analyzed is that the diffraction from the solar disk by the external occulter enters the instrument un-obstructed until the internal occulter, and with a brightness 100 times higher than the close corona (~1RSun) brightness. The simulation of this diffraction as well as its propagation inside the ASPIICS telescope creating additional straylight, had to be carefully established in order to give realistic results of its impact on the performances while being actually possible to compute.
The ESA formation Flying mission Proba-3 will y the giant solar coronagraph ASPIICS. The instrument is composed of a 1.4 meter diameter external occulting disc mounted on the Occulter Spacecraft and a Lyot-style solar coronagraph of 50mm diameter aperture carried by the Coronagraph Spacecraft positioned 144 meters behind. The system will observe the inner corona of the Sun, as close as 1.1 solar radius. For a solar coronagraph, the most critical source of straylight is the residual diffracted sunlight, which drives the scientific performance of the observation. This is especially the case for ASPIICS because of its reduced field-of-view close to the solar limb. The light from the Sun is first diffracted by the edge of the external occulter, and then propagates and scatters inside the instrument. There is a crucial need to estimate both intensity and distribution of the diffraction on the focal plane. Because of the very large size of the coronagraph, one cannot rely on representative full scale test campaign. Moreover, usual optics software package are not designed to perform such diffraction computation, with the required accuracy. Therefore, dedicated approaches have been developed in the frame of ASPIICS. First, novel numerical models compute the diffraction profile on the entrance pupil plane and instrument detector plane (Landini et al., Rougeot et al.), assuming perfect optics in the sense of multi-reflection and scattering. Results are confronted to experimental measurements of diffraction. The paper reports the results of the different approaches.
This paper presents the recent achievements in the development of ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), a solar coronagraph that is the primary payload of ESA’s formation flying in-orbit demonstration mission PROBA-3. The PROBA-3 Coronagraph System is designed as a classical externally occulted Lyot coronagraph but it takes advantage of the opportunity to place the 1.4 meter wide external occulter on a companion spacecraft, about 150m apart, to perform high resolution imaging of the inner corona of the Sun as close as ~1.1 solar radii. Besides providing scientific data, ASPIICS is also equipped with sensors for providing relevant navigation data to the Formation Flying GNC system. This paper is reviewing the recent development status of the ASPIICS instrument as it passed CDR, following detailed design of all the sub-systems and testing of STM and various Breadboard models.
Etienne Renotte, Steve Buckley, Ileana Cernica, François Denis, Richard Desselle, Lieve De Vos, Silvano Fineschi, Karl Fleury-Frenette, Damien Galano, Camille Galy, Jean-Marie Gillis, Estelle Graas, Rafal Graczyk, Petra Horodyska, Nektarios Kranitis, Michal Kurowski, Michal Ladno, Sylvie Liebecq, Davide Loreggia, Idriss Mechmech, Radek Melich, Dominique Mollet, Michał Mosdorf, Mateusz Mroczkowski, Kevin O’Neill, Karel Patočka, Antonis Paschalis, Radek Peresty, Bartlomiej Radzik, Miroslaw Rataj, Lucas Salvador, Jean-Sébastien Servaye, Yvan Stockman, Cédric Thizy, Tomasz Walczak, Alicja Zarzycka, Andrei Zhukov
This paper presents the current status of ASPIICS, a solar coronagraph that is the primary payload of ESA’s formation
flying in-orbit demonstration mission PROBA-3.
The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity
sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead
to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like
conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of
the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light
corona where the main coronal mass is concentrated.
The PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging
Investigation of the Corona of the Sun) is designed as a classical externally occulted Lyot coronagraph but it takes
advantage of the opportunity to place the external occulter on a companion spacecraft, about 150m apart, to perform high
resolution imaging of the inner corona of the Sun as close as ~1.1 solar radii. The images will be tiled and compressed on
board in an FPGA before being down-linked to ground for scientific analyses.
ASPIICS is built by a large European consortium including about 20 partners from 7 countries under the auspices of the
European Space Agency. This paper is reviewing the recent development status of the ASPIICS instrument as it is
approaching CDR.
Etienne Renotte, Andres Alia, Alessandro Bemporad, Joseph Bernier, Cristina Bramanti, Steve Buckley, Gerardo Capobianco, Ileana Cernica, Vladimir Dániel, Radoslav Darakchiev, Marcin Darmetko, Arnaud Debaize, François Denis, Richard Desselle, Lieve de Vos, Adrian Dinescu, Silvano Fineschi, Karl Fleury-Frenette, Mauro Focardi, Aurélie Fumel, Damien Galano, Camille Galy, Jean-Marie Gillis, Tomasz Górski, Estelle Graas, Rafał Graczyk, Konrad Grochowski, Jean-Philippe Halain, Aline Hermans, Russ Howard, Carl Jackson, Emmanuel Janssen, Hubert Kasprzyk, Jacek Kosiec, Serge Koutchmy, Jana Kovačičinová, Nektarios Kranitis, Michał Kurowski, Michał Ładno, Philippe Lamy, Federico Landini, Radek Lapáček, Vít Lédl, Sylvie Liebecq, Davide Loreggia, Brian McGarvey, Giuseppe Massone, Radek Melich, Agnes Mestreau-Garreau, Dominique Mollet, Łukasz Mosdorf, Michał Mosdorf, Mateusz Mroczkowski, Raluca Muller, Gianalfredo Nicolini, Bogdan Nicula, Kevin O'Neill, Piotr Orleański, Marie-Catherine Palau, Maurizio Pancrazzi, Antonios Paschalis, Karel Patočka, Radek Peresty, Irina Popescu, Pavel Psota, Miroslaw Rataj, Jan Rautakoski, Marco Romoli, Roman Rybecký, Lucas Salvador, Jean-Sébastien Servaye, Cornel Solomon, Yvan Stockman, Arkadiusz Swat, Cédric Thizy, Michel Thomé, Kanaris Tsinganos, Jim Van der Meulen, Nico Van Vooren, Tomáš Vit, Tomasz Walczak, Alicja Zarzycka, Joe Zender, Andrei Zhukov
KEYWORDS: Coronagraphy, Sensors, Sun, Solar processes, Field programmable gate arrays, Light emitting diodes, Electronics, Staring arrays, Space operations, Information operations
The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between ~1.08 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase.
In the framework of development of ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), the Centre Spatial de Liege is responsible of the optical design of the coronagraph and the optics will be manufactured by TOPTEC. The particularity of this coronagraph is to have an external occulter located 150 m ahead of the first imaging lens. This external occulter is re-imaged on an internal occulter which function is - as in a classical externally occulted Lyot coronagraph - to block the sun light diffracted by the external occulter and to reduce the straylight on the detector. The selection of this configuration is driven by the requirement to observe the corona as close as possible to the solar limb (i.e. 1 RSun) without imaging the limb itself. A requirement of 1.08 RSun is specified at optical design level to grant 1.2 Rsun at instrument level. The coronograph instrument is designed to have a field of view of 1.6° x 1.6° with a resolution of less than 6 arcsec. Its performances are limited by diffraction in a 530 – 590 nm wavelength range. This paper presents the optical design and demonstrates that by design the requirements are fulfilled within the misalignment, manufacturing and thermo-elastic error contributions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.