We study theoretically and experimentally spectral and polarization characteristics of hybrid systems of VCSELs integrated within liquid crystal (LC) cells. Three cases are considered: Nematic or cholesteric LC on top of VCSEL, coupled-cavity system with the second cavity next to the VCSEL’s one filled in with nematic LC and a system with a nematic LC inside the VCSEL cavity. For the case of nematic liquid crystal - VCSEL coupled cavity system we demonstrate selection between two orthogonal directions of linear polarization of the fundamental mode by changing the LC length or by electro-optical tuning of the LC director. For the case of cholesteric liquid crystal-VCSEL system we demonstrate lasing on circularly polarized (CP) modes due to the LC band gap for CP light. The transition from nematic to isotropic phase of the LC when increasing temperature leads to a drastic change of the polarization of the generated light from left-handed circular to linear polarization. Finally, we investigate the possibility of efficient wavelength tuning by utilizing electrooptical effect in nematic LC layer integrated next to the active region in a VCSEL cavity.
We study theoretically the spectral and polarization threshold characteristics of Vertical-Cavity Surface-Emitting Lasers with nematic and cholesteric liquid crystal overlay: LC-VCSELs. In the first case, we demonstrate the possibility of selecting between two orthogonal directions of linear polarization (LP) of the fundamental mode (x or y LP) by choosing appropriate NLC length and to achieve strong polarization discrimination: threshold gain difference as large as several times the threshold gain. We also demonstrate an active control of light polarization by electro-optically tuning the LC director and show that either polarization switching between x and y LP modes or continuous change of the LP direction is possible. For cholesteric LC-VCSEL we show that it becomes a coupled system with different spectral, threshold and polarization characteristics than the ones of the stand-alone VCSEL. Due to the existence of a band gap for circularly polarized light in the liquid crystal, lasing occurs in almost circularly polarized modes at the LC side.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.