Analytically predicting photon paths in real-high
scattering-anisotropic tissues is extremely complex, due to
the significant random scattering events that photons suffer as they traverse the tissue, especially at
boundaries between areas with different optical properties. An statistically correct optical and anatomical
model of photon trajectories inside laboratory animals will therefore improve considerably our understanding
about how light diffuses within the animals, and therefore help us designing efficient experimental setups and
reconstruction algorithms for fluorescence mediated tomography (FMT). Here, we present new simulations of
photon propagation and fluorescence emission in anisotropic media using realistic models of laboratory
animals and a Monte Carlo (MC) based approach. We compare the MC simulation results with an
approximation of the solution of the diffusion equation using finite differences and discuss the different
behaviour of the two methods.
Windmills are large composite structures, usually located at difficult-to-access sites, bearing strong dynamic loads in a harsh environment. In-service inspection involves dismounting the blades, a very costly process. Instead of inspecting the windmills regularly, they are usually overdesigned. Furthermore, the design of a windmill is based on estimated wind conditions, while the real wind is seldom measured. The main inconvenience for it are the characteristics of the conventional equipment needed to carry out the measurements. The substitution of traditional sensors for Bragg gratings and piezoelectronics to measure the strain field and vibrational frequencies adds the advantages of a smaller size, no drift, no EMI and the possibility of embedding them while manufacturing, so the windmill is fully equipped when installed. Long-term measurements are possible to check both the in-service conditions and the degradation of the structure. Two possibilities were tested: embedding of the sensors while manufacturing with low disturbance of the process and surface-bonding of the sensors. Windmill qualification test were carried out to check the survivability of the Bragg gratings and the piezoelectric sensors under extreme environment are presently running. Results are hopeful. The next step could be a permanent connection via modem to a remote controller that can use the acquired data to map the wind conditions and/or the structural health.
A 100-Mbit/s FDDI network interface unit (NIU) is described that supports real-time data, voice and video. Its high-speed interrupt-driven hardware architecture efficiently manages stream and packet data transfers to the FDDI network. Other enhancements include modular single-mode laser-dioce fiber optic links to maximize node spacing, optic bypass switches for increased fault tolerance, and a hardware performance monitor to gather real-time network diagnostics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.