For the 9000 train accidents reported each year in the European Union [1], the Recording Strip (RS) and Filling-Card
(FC) related to the train activities represent the only usable evidence for SNCF (the French railway operator) and most of
National authorities. More precisely, the RS contains information about the train journey, speed and related Driving
Events (DE) such as emergency brakes, while the FC gives details on the departure/arrival stations. In this context, a
complete checking for 100% of the RS was recently voted by French law enforcement authorities (instead of the 5%
currently performed), which raised the question of an automated and efficient inspection of this huge amount of
recordings. To do so, we propose a machine vision prototype, constituted with cassettes receiving RS and FC to be
digitized. Then, a video analysis module firstly determines the type of RS among eight possible types; time/speed curves
are secondly extracted to estimate the covered distance, speed and stops, while associated DE are finally detected using
convolution process. A detailed evaluation on 15 RS (8000 kilometers and 7000 DE) shows very good results (100% of
good detections for the type of band, only 0.28% of non detections for the DE). An exhaustive evaluation on a panel of
about 100 RS constitutes the perspectives of the work.
KEYWORDS: Cameras, Video, Video surveillance, Detection and tracking algorithms, Video processing, Imaging systems, Remote sensing, Zoom lenses, 3D video streaming, 3D acquisition
Object tracking from multiple Pan Tilt Zoom (PTZ) cameras is an important task. This
paper deals with the evaluation of the result of such a system. This performance evaluation is
conducted by first considering the characterization of the PTZ parameters and then by the
trajectories themselves. The camera parameters with be evaluated with the homography errors;
the trajectories will be evaluated according to the location and miss-identification errors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.