This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The parametric study could be analyzed with the sensitivity study, response surface, and optimization. The results show the parameters that have the most impact on performance and show its effect on performance in various conditions such as manufacturing load, grounded based stability with screw pressure, natural frequency, thermal load, and gravity release. The optimization process can lead to the improvement of the optical design. This study improves understanding of opto-mechanical design of the flexible pads in metallic mirrors, which can be applied to other metallic mirror designs.
This paper will introduce the different printing methods and post-processing steps to convert AM ceramic samples into reflective mirrors. The samples are flat disks, 50mm diameter and 5mm in height, with three samples printed in SiC + Si and three printed in fused silica. Early results in polishing the SiC + Si material demonstrated that a micro-roughness of ∼2nm Sq could be achieved. To build on this study, the 50mm SiC + Si samples had three different AM finishing steps to explore the best approach for abrasive lapping and polishing, the reflective surfaces achieved demonstrated micro-roughness values varied between 2nm and 5nm Sq for the different AM finishing steps. To date, the printed fused silica material has heritage in lens applications; however, its suitability for mirror fabrication was to be determined. Abrasive lapping and polishing was used to process the fused silica to reflective surface and an average micro-roughness of <1nm Sq achieved on the samples.
This paper will describe the design, manufacture and metrology of mirror prototypes from the Active Deployable Optical Telescope (ADOT) 6U CubeSat project. The AM mirror is 52mm in diameter, 10mm deep, with a convex 100mm radius of curvature reflective surface and deploys telescopically on three booms. The objectives of the designs were to combine the boom mounting features into the mirror and to lightweight both prototypes by 50% and 70% using internal, thin-walled lattices. Four final lattice designs were downselected through simulation and prototype validation. Prototypes were printed in the aluminium alloy AlSi10Mg using powder bed fusion and fused silica using stereolithography. Aluminium mirrors were single point diamond turned and had surface roughness measurements taken. Fused silica designs were adapted from the aluminium designs and have completed printing.
This paper explores the application of HIP on printed aluminium substrates intended for mirror production using single point diamond turning (SPDT). The objective of the HIP is to reduce porosity whilst targeting a small grain growth within the aluminium, which is important in allowing the SPDT to generate surfaces with low micro-roughness. For this study, three disks, 50 mm diameter by 5 mm, were printed in AlSi10Mg at 0◦, 45◦, and 90◦ with respect to the build plate. X-ray computed tomography (XCT) was conducted before and after the HIP cycle to confirm the effectiveness of HIP to close porosity. The disks were SPDT and the micro-roughness evaluated. Mechanical testing and electron backscatter diffraction (EBSD) was used to quantify the mechanical strength and the grain size after HIP.
Field driven design is a generative process which enables the creation of complex geometries based on 3- dimensional simulation data. Fields can be used to optimise lightweight, lattice structures thereby taking advantage of the benefits of additive manufacturing.
This paper presents the design and analysis of a novel, lattice CubeSat chassis based on the 6U Active Deployable Optical Telescope (A-DOT) platform. A custom, lightweight chassis with integrated mounting features was considered as A-DOT has a larger mass than typical CubeSats due to its deployable optics. Using finite element analysis (FEA) software, mechanical qualification vibration loads were applied to the CubeSat assembly to simulate launch conditions. These included modal analysis, quasi-static acceleration, and random vibration. A field was produced, combining the different simulation results; this was used to control density of planar lattices generated to fill the CubeSat chassis panel volume. The selected lattices were optimised to reduce mass while maintaining stiffness required to survive launch.
A single test CubeSat chassis panel was additively manufactured in Aluminium (AlSi10Mg).
The direct imaging of exoplanets using coronagraphic instruments provides a good example of an astronomical application that can greatly benefit from such developments. Exoplanets imaging is very demanding in terms of optical surface quality, however, the majority of coronagraphic instruments use off axis optics, which manufacturing of such optics could present some drawbacks: either the optics are cut out of a parent large mirror, resulting in a material loss, or the surfaces are machined with sub-aperture tools, resulting in high spatial frequency ripples which must be avoided for this application.
Thanks to 3D printing and topology optimisation we created an innovative warping harness design which can generate any off axis parabola shapes with only one actuator. We optimised the harness thickness distribution in order to reach non symmetrical deformation composed of astigmatism and coma. The warping is applied by micrometric screws and the high transmission factor of the system allows to keep stable the final error budget despite the error introduced by the warping harness fabricated by 3D printing. Several warping harness designs and materials were explored for the prototyping phase. This study is part of WFIRST satellite which will be launch in 2024 by NASA to observe galaxies via a wide field instrument and also perform exoplanet direct imaging via coronagraph. In the case of the WFIRST coronagraphic instrument, eight off axis parabolas are used to relay the beam from one pupil to another. We present the first prototyping results dedicated to the WFIRST off axis parabolas. Deformation surface results are performed by interferometric measurements and compared to Finite Element Analysis predictions.
The surface roughness on a diamond-turned AM aluminium (AlSi10Mg) mirror is presented which demonstrates the ability to achieve an average roughness of ~3.6nm root mean square (RMS) measured over a 3 x 3 grid. A Fourier transform of the roughness data is shown which deconvolves the roughness into contributions from the diamond-turning tooling and the AM build layers. In addition, two nickel phosphorus (NiP) coated AlSi10Mg AM mirrors are compared in terms of surface form error; one mirror has a generic sandwich lightweight design at 44% the mass of a solid equivalent, prior to coating and the second mirror was lightweighted further using the finite element analysis tool topology optimisation. The surface form error indicates an improvement in peak-to-valley (PV) from 323nm to 204nm and in RMS from 83nm to 31nm for the generic and optimised lightweighting respectively while demonstrating a weight reduction between the samples of 18%. The paper concludes with a discussion of the breadth of AM design that could be applied to mirror lightweighting in the future, in particular, topology optimisation, tessellating polyhedrons and Voronoi cells are presented.
Simulations show that a substantial improvement in angular resolution is possible with this approach after multiple correction ‘cycles’. To assess this, custom coating systems have been developed and corrections of full-shell optics are underway. To date, a factor of < 2 improvement in the imaging quality of the optics has been demonstrated in x-ray tests after a single stage of correction.
In addition to MSFC's optics fabrication, there are also several areas of research and development to create the high resolution light weight optics which are required by future x-ray telescopes. Differential deposition is one technique which aims to improve the angular resolution of lightweight optics through depositing a filler material to smooth out fabrication imperfections. Following on from proof of concept studies, two new purpose built coating chambers are being assembled to apply this deposition technique to astronomical x-ray optics. Furthermore, MSFC aims to broaden its optics fabrication through the recent acquisition of a Zeeko IRP 600 robotic polishing machine. This paper will provide a summary of the current missions and research and development being undertaken at NASA's MSFC.
View contact details
No SPIE Account? Create one