The PRobe far-Infrared Mission for Astrophysics (PRIMA) is an actively cooled, infrared observatory for the community for the next decade.
On board, an infrared camera, PRIMAger, will provide observers with coverage of mid-infrared to far-infrared wavelengths from about 25 to 264 microns. PRIMAger will offer two imaging modes: the Hyperspectral mode will cover the 25-80 microns wavelength range with a resolution R~10 while the Polarimetric mode will have four broad-band filters, sensitive to polarization, from 80 to 264 microns. These capabilities have been specifically tailored to answer fundamental astrophysical questions such as black hole and star-formation coevolution in galaxies, the evolution of small dust grains over a wide range of redshifts, and the effects of interstellar magnetic fields in various environments, as well as opening a vast discovery space with versatile photometric and polarimetric capabilities.
FIRESS is the multi-purpose spectrometer proposed for the PRobe far-Infrared Mission for Astrophysics (PRIMA). The sensitive spectrometer on the cold telescope provide factors of 1,000 to 100,000 improvement in spatial-spectral mapping speed relative to Herschel, accessing galaxies across the arc of cosmic history via their dust-immune far-infrared spectral diagnostics. FIRESS covers the 24 to 235 micron range with four slit-fed grating spectrometer modules providing resolving power between 85 and 130. The four slits overlap in pairs so that a complete spectrum of any object of interest is obtained in 2 pointings. For higher-resolving-power studies, a Fourier-transform module (FTM) is inserted into the light path in advance of the grating backends. The FTM serves all four bands and boosts the resolving power up to 4,400 at 112 microns, allowing extraction of the faint HD transition in protoplanetary disks. FIRESS uses four 2016-pixel arrays of kinetic inductance detectors (KIDs) which operate at the astrophysical photon background limit. KID sensitivities for FIRESS have been demonstrated, and environmental qualification of prototype arrays is underway.
Slated for launch in 2025, SPHEREx will be NASA’s next astrophysics explorer mission. Optimized to meet rigorous requirements to precisely map the Universe’s large scale structure, produce deep maps of the diffuse extra-galactic background, and to survey the Milky Way’s biogenic ice content, the SPHEREx telescope’s widefield optical design utilizes a series of custom near infrared linear variable filters to survey the entire sky spectroscopically. This unique instrument has now completed its construction phase and is fully assembled for flight. To precisely focus and calibrate the optical and spectroscopic properties of SPHEREx, a custom optical-cryogenic facility was developed and commissioned. In this overview, we describe the implementation of the recently completed instrument integration and testing campaign, delivering a well characterized imaging spectrometer to be integrated with the rest of the observatory.
The Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) is an upcoming all-sky near-infrared spectroscopic survey satellite designed to address all three primary science goals of NASA’s Astrophysics Division. SPHEREx employs a series of Linear Variable Filters (LVFs) to create 102 spectral channels across the wavelength range of 0.75 to 5 µm, with spectral resolutions R between 35 and 120. This paper presents the spectral calibration setup used for SPHEREx and discusses the various challenges encountered during the measurement process. Ultimately, we demonstrate the spectral responses for all 25 million pixels in SPHEREx.
The SPHEREx satellite will survey the entire sky between 0.75 - 5.0 μm in over 100 wavelengths with spectral resolving power R = 35 to 130 to study cosmic inflation, the history of galaxy formation, and biogenic ices in the Milky Way. The instrument uses six HAWAII-2RG detectors and linear variable filters (LVF) that sort incoming photons into different wavelengths along one spatial direction of the detectors. To minimize the scattered light produced when sources outside of SPHEREx field of view land on the LVF mounting frame (also known as “dragon’s breath”), a scale model was tested to refine a double undercut edge design and coating recipe that halves the ghost size and reduces the ghost’ intensity by 10-fold. We present here the edge design, the scale model experiment, and the characterization of the ghost in the flight telescope.
PRIMA is a cryogenically-cooled, far-infrared observatory for the community for the beginning of the next decade (∼2031). It features two instruments, PRIMAger and FIRESS. The PRIMAger instrument will cover the mid-IR to far-IR wavelengths, from about 25 to 260 µm. Hyperspectral imaging can be obtained in 12 medium-resolution bands (R ∼ 10, more precisely a linear variable filter) covering the wavelength range from 25 to 80 micrometers, and broad-band (R ∼ 4) photometric and polarimetric imaging can be carried out in four bands between 80 and 260 µm. PRIMAger’s unique and unprecedented scientific capabilities will enable study, both in PI and GO programs, of black hole and star-formation coevolution in galaxies, the evolution of small dust grains over a wide range of redshift, and the effects of interstellar magnetic fields in various environments, as well as opening up a vast discovery space with its versatile imaging and polarimetric capabilities. One of the most ambitious possibilities is to carry out an all-sky far-IR survey with PRIMAger, creating a rich data set for many investigations. The design of PRIMAger is presented is an accompanying paper (Ciesla et al., SPIE Astronomical Telescopes + Instrumentation 2024).
Proposed for a late 2031 launch, PRIMA, the Probe far-Infrared Mission for Astrophysics, closes the gap between JWST and ALMA, offering unprecedented sensitivity and spectroscopic mapping capability in the 24-264 μm range for detailed studies of galactic evolution, planetary atmospheres, and dust-metal dynamics. Onboard PRIMA, the PRIMAger camera operates in the 25-80 μm bands utilizing advanced MKID detector modules for hyperspectral imaging enabled by Linear Variable Filters. This paper presents a graded resonant metal-mesh filter technology, demonstrating very promising efficiency in the short wavelength range. Overcoming dielectric loss limitations, an innovative dual-layer LVF design on thin membranes achieves a transmission of 80-90% at 12 THz. Rigorous electromagnetic modeling, optimization, and position-dependent spectral response measurements validate the filter performance. We present a comprehensive set of simulation and experimental results, including environmental pre-qualification tests, strongly supporting the suitability of this technology for future space applications.
SPHEREx is a NASA Medium Explorer mission planned for launch in early 2025. It will produce an all-sky near infrared spectral survey from 0.75µm to 5µm with 6.2”x 6.2” pixels and spectral resolving power ranging between R=35 and R=130.
Each focal plane assembly (FPA) comprises three 2048x2048 H2RG detector arrays. The H2RG detector is paired with a Linear Variable Filter, placed just above the detector, that defines a spectral response that varies over the detector along one spatial direction. Two FPAs view the sky through a dichroic beamsplitter, where the short-wave FPA uses three 2.5µm cutoff H2RGs and the mid-wave FPA uses three 5.3µm cutoff H2RGs. We developed a novel laboratory setup to carry out spectral response measurements of every pixel by coupling a cryogenic Winston Cone and integrating spheres to a grating spectrometer which allows us to measure the full 2x3.5°x11.3° field of view simultaneously. This presentation will present the design of the test apparatus and results.
SPHEREx, the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and ices Explorer, is a NASA MIDEX mission planned for launch in 2024. SPHEREx will carry out the first all-sky spectral survey at wavelengths between 0.75µm and 5µm with spectral resolving power ~40 between 0.75 and 3.8µm and ~120 between 3.8 and 5µm At the end of its two-year mission, SPHEREx will provide 0.75-to-5µm spectra of each 6.”2x6.”2 pixel on the sky - 14 billion spectra in all. This paper updates an earlier description of SPHEREx presenting changes made during the mission's Preliminary Design Phase, including a discussion of instrument integration and test ow and a summary of the data processing, analysis, and distribution plans.
We describe the Short Wavelength Camera (SWCam) for the CCAT observatory including the primary science drivers, the coupling of the science drivers to the instrument requirements, the resulting implementation of the design, and its performance expectations at first light. CCAT is a 25 m submillimeter telescope planned to operate at 5600 meters, near the summit of Cerro Chajnantor in the Atacama Desert in northern Chile. CCAT is designed to give a total wave front error of 12.5 μm rms, so that combined with its high and exceptionally dry site, the facility will provide unsurpassed point source sensitivity deep into the short submillimeter bands to wavelengths as short as the 200 μm telluric window. The SWCam system consists of 7 sub-cameras that address 4 different telluric windows: 4 subcameras at 350 μm, 1 at 450 μm, 1 at 850 μm, and 1 at 2 mm wavelength. Each sub-camera has a 6’ diameter field of view, so that the total instantaneous field of view for SWCam is equivalent to a 16’ diameter circle. Each focal plane is populated with near unit filling factor arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) with pixels scaled to subtend an solid angle of (λ/D)2 on the sky. The total pixel count is 57,160. We expect background limited performance at each wavelength, and to be able to map < 35(°)2 of sky to 5 σ on the confusion noise at each wavelength per year with this first light instrument. Our primary science goal is to resolve the Cosmic Far-IR Background (CIRB) in our four colors so that we may explore the star and galaxy formation history of the Universe extending to within 500 million years of the Big Bang. CCAT's large and high-accuracy aperture, its fast slewing speed, use of instruments with large format arrays, and being located at a superb site enables mapping speeds of up to three orders of magnitude larger than contemporary or near future facilities and makes it uniquely sensitive, especially in the short submm bands.
The inflationary paradigm of the early universe predicts a stochastic background of gravitational waves which would generate a B-mode polarization pattern in the cosmic microwave background (CMB) at degree angular scales. Precise measurement of B-modes is one of the most compelling observational goals in modern cosmology. Since 2011, the Keck Array has deployed over 2500 transition edge sensor (TES) bolometer detectors at 100 and 150 GHz to the South Pole in pursuit of degree-scale B-modes, and Bicep3 will follow in 2015 with 2500 more at 100 GHz. Characterizing the spectral response of these detectors is important for controlling systematic effects that could lead to leakage from the temperature to polarization signal, and for understanding potential coupling to atmospheric and astrophysical emission lines. We present complete spectral characterization of the Keck Array detectors, made with a Martin-Puplett Fourier Transform Spectrometer at the South Pole, and preliminary spectra of Bicep3 detectors taken in lab. We show band centers and effective bandwidths for both Keck Array bands, and use models of the atmosphere at the South Pole to cross check our absolute calibration. Our procedure for obtaining interferograms in the field with automated 4-axis coupling to the focal plane represents an important step towards efficient and complete spectral characterization of next-generation instruments more than 10000 detectors.
Searching for evidence of inflation by measuring B-modes in the cosmic microwave background (CMB) polarization at degree angular scales remains one of the most compelling experimental challenges in cosmology. BICEP2 and the Keck Array are part of a program of experiments at the South Pole whose main goal is to achieve the sensitivity and systematic control necessary for measurements of the tensor-to-scalar ratio at σ(r) ~0:01. Beam imperfections that are not sufficiently accounted for are a potential source of spurious polarization that could interfere with that goal. The strategy of BICEP2 and the Keck Array is to completely characterize their telescopes' polarized beam response with a combination of in-lab, pre-deployment, and on-site calibrations. We Sereport the status of these experiments, focusing on continued improved understanding of their beams. Far-field measurements of the BICEP2 beam with a chopped thermal source, combined with analysis improvements, show that the level of residual beam-induced systematic errors is acceptable for the goal of σ(r) ~ 0:01 measurements. Beam measurements of the Keck Array side lobes helped identify a way to reduce optical loading with interior cold baffles, which we installed in late 2013. These baffles reduced total optical loading, leading to a ~ 10% increase in mapping speed for the 2014 observing season. The sensitivity of the Keck Array continues to improve: for the 2013 season it was 9:5 μK _/s noise equivalent temperature (NET). In 2014 we converted two of the 150-GHz cameras to 100 GHz for foreground separation capability. We have shown that the BICEP2 and the Keck Array telescope technology is sufficient for the goal of σ(r) ~ 0:01 measurements. Furthermore, the program is continuing with BICEP3, a 100-GHz telescope with 2560 detectors.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world’s largest airborne observatory, featuring a
2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA’s current instrument
suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band
imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a
0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a
multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for
Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism
spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating
spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution
spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames
Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally
developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add
polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its
instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing
instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future
instrumentation.
Low-loss lenses are required for submillimeter astronomical applications, such as instrumentation for CCAT, a 25 m diameter telescope to be built at an elevation of 18,400 ft in Chile. Silicon is a leading candidate for dielectric lenses due to its low transmission loss and high index of refraction; however, the latter can lead to large reflection losses. Additionally, large diameter lenses (up to 40 cm), with substantial curvature present a challenge for fabrication of antireflection coatings. Three anti-reflection coatings are considered: a deposited dielectric coating of Parylene C, fine mesh structures cut with a dicing saw, and thin etched silicon layers (fabricated with deep reactive ion etching) for bonding to lenses. Modeling, laboratory measurements, and practicalities of fabrication for the three coatings are presented and compared. Measurements of the Parylene C anti-reflection coating were found to be consistent with previous studies and can be expected to result in a 6% transmission loss for each interface from 0.787 to 0.908 THz. The thin etched silicon layers and fine mesh structure anti-reflection coatings were designed and fabricated on test silicon wafers and found to have reflection losses less than 1% at each interface from 0.787 to 0.908 THz. The thin etched silicon layers are our preferred method because of high transmission efficiency while having an intrinsically faster fabrication time than fine structures cut with dicing saws, though much work remains to adapt the etched approach to curved surfaces and optics < 4" in diameter unlike the diced coatings.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 5–40 μm imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60–240 μm, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.3–1.1 μm imager, developed at Lowell Observatory. FLITECAM is a 1–5 μm wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42–210 μm integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 5–28 μm high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50–240 μm imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011.
The Bicep2 and Keck Array experiments are designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 2-4 degrees (ℓ = 50–100). This is the region in which the B-mode signal, a signature prediction of cosmic inflation, is expected to peak. Bicep2 was deployed to the South Pole at the end of 2009 and is in the middle of its third year of observing with 500 polarization-sensitive detectors at 150 GHz. The Keck Array was deployed to the South Pole at the end of 2010, initially with three receivers—each similar to Bicep2. An additional two receivers have been added during the 2011-12 summer. We give an overview of the two experiments, report on substantial gains in the sensitivity of the two experiments after post-deployment optimization, and show preliminary maps of CMB polarization from Bicep2.
The Keck Array (SPUD) began observing the cosmic microwave background's polarization in the winter of 2011 at the South Pole. The Keck Array follows the success of the predecessor experiments BICEP and BICEP2, 1 using five on-axis refracting telescopes. These have a combined imaging array of 2500 antenna-coupled TES bolometers read with a SQUID- based time domain multiplexing system. We will discuss the detector noise and the optimization of the readout. The achieved sensitivity of the Keck Array is 11.5 μKCMB√s in the 2012 configuration.
Between the BICEP2 and Keck Array experiments, we have deployed over 1500 dual polarized antenna coupled bolometers
to map the Cosmic Microwave Background’s polarization. We have been able to rapidly deploy these detectors because
they are completely planar with an integrated phased-array antenna. Through our experience in these experiments, we
have learned of several challenges with this technology- specifically the beam synthesis in the antenna- and in this paper
we report on how we have modified our designs to mitigate these challenges. In particular, we discus differential steering
errors between the polarization pairs’ beam centroids due to microstrip cross talk and gradients of penetration depth in the
niobium thin films of our millimeter wave circuits. We also discuss how we have suppressed side lobe response with a
Gaussian taper of our antenna illumination pattern. These improvements will be used in Spider, Polar-1, and this season’s
retrofit of Keck Array.
Submillimeter cameras now have up to 104 pixels (SCUBA 2). The proposed CCAT 25-meter submillimeter telescope will feature a 1 degree field-of-view. Populating the focal plane at 350 microns would require more than 106 photon-noise limited pixels. To ultimately achieve this scaling, simple detectors and high-density multiplexing are essential. We are addressing this long-term challenge through the development of frequency-multiplexed superconducting microresonator detector arrays. These arrays use lumped-element, direct-absorption resonators patterned from titanium nitride films. We will discuss our progress toward constructing a scalable 350 micron pathfinder instrument focusing on fabrication simplicity, multiplexing density, and ultimately a low per-pixel cost.
The Keck Array (SPUD) is a set of microwave polarimeters that observes from the South Pole at degree angular scales in search of a signature of Inflation imprinted as B-mode polarization in the Cosmic Microwave Background (CMB). The first three Keck Array receivers were deployed during the 2010-2011 Austral summer, followed by two new receivers in the 2011-2012 summer season, completing the full five-receiver array. All five receivers are currently observing at 150 GHz. The Keck Array employs the field-proven BICEP/ BICEP2 strategy of using small, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. We describe our efforts to characterize the main beam shape and beam shape mismatch between co-located orthogonally-polarized detector pairs, and discuss the implications of measured differential beam parameters on temperature to polarization leakage in CMB analysis.
C. Darren Dowell, Michael Pohlen, Chris Pearson, Matt Griffin, Tanya Lim, George Bendo, Dominique Benielli, James Bock, Pierre Chanial, Dave Clements, Luca Conversi, Marc Ferlet, Trevor Fulton, Rene Gastaud, Jason Glenn, Tim Grundy, Steve Guest, Ken King, Sarah Leeks, Louis Levenson, Nanyao Lu, Huw Morris, Hien Nguyen, Brian O'Halloran, Seb Oliver, Pasquale Panuzzo, Andreas Papageorgiou, Edward Polehampton, Dimitra Rigopoulou, Helene Roussel, Nicola Schneider, Bernhard Schulz, Arnold Schwartz, David Shupe, Bruce Sibthorpe, Sunil Sidher, Anthony Smith, Bruce Swinyard, Markos Trichas, Ivan Valtchanov, Adam Woodcraft, C. Kevin Xu, Lijun Zhang
We describe the current state of the ground segment of Herschel-SPIRE photometer data processing, approximately
one year into the mission. The SPIRE photometer operates in two modes: scan mapping and chopped
point source photometry. For each mode, the basic analysis pipeline - which follows in reverse the effects from
the incidence of light on the telescope to the storage of samples from the detector electronics - is essentially
the same as described pre-launch. However, the calibration parameters and detailed numerical algorithms have
advanced due to the availability of commissioning and early science observations, resulting in reliable pipelines
which produce accurate and sensitive photometry and maps at 250, 350, and 500 μm with minimal residual
artifacts. We discuss some detailed aspects of the pipelines on the topics of: detection of cosmic ray glitches,
linearization of detector response, correction for focal plane temperature drift, subtraction of detector baselines
(offsets), absolute calibration, and basic map making. Several of these topics are still under study with the
promise of future enhancements to the pipelines.
The Experimental Probe of Inflationary Cosmology - Intermediate Mission (EPIC-IM) is a concept for the NASA
Einstein Inflation Probe satellite. EPIC-IM is designed to characterize the polarization properties of the Cosmic
Microwave Background to search for the B-mode polarization signal characteristic of gravitational waves generated
during the epoch of Inflation in the early universe. EPIC-IM employs a large focal plane with 11,000 detectors operating
in 9 wavelength bands to provide 30 times higher sensitivity than the currently operating Planck satellite. The optical
design is based on a wide-field 1.4 m crossed-Dragone telescope, an aperture that allows not only comprehensive
measurements of Inflationary B-mode polarization, but also measurements of the E-mode and lensing polarization
signals to cosmological limits, as well as all-sky maps of Galactic polarization with unmatched sensitivity and angular
resolution. The optics are critical to measuring these extremely faint polarization signals, and any design must meet
demanding requirements on systematic error control. We describe the EPIC-IM crossed Dragone optical design, its
polarization properties, and far-sidelobe response.
We describe our ongoing project to build a far-infrared polarimeter for the HAWC instrument on SOFIA. Far-IR
polarimetry reveals unique information about magnetic fields in dusty molecular clouds and is an important
tool for understanding star formation and cloud evolution. SOFIA provides flexible access to the infrared as
well as good sensitivity to and angular resolution of continuum emission from molecular clouds. We are making
progress toward outfitting HAWC, a first-generation SOFIA camera, with a four-band polarimeter covering 50 to
220 microns wavelength. We have chosen a conservative design which uses quartz half-wave plates continuously
rotating at ~0.5 Hz, ball bearing suspensions, fixed wire-grid polarizers, and cryogenic motors. Design challenges
are to fit the polarimeter into a volume that did not originally envision one, to minimize the heating of the
cryogenic optics, and to produce negligible interference in the detector system. Here we describe the performance
of the polarimeter measured at cryogenic temperature as well as the basic method we intend for data analysis.
We are on track for delivering this instrument early in the operating lifetime of SOFIA.
J. Brevik, R. Aikin, M. Amiri, S. Benton, J. Bock, J. Bonetti, B. Burger, C. Dowell, L. Duband, J. Filippini, S. Golwala, M. Halpern, M. Hasselfield, G. Hilton, V. Hristov, K. Irwin, J. Kaufman, B. Keating, J. Kovac, C. L. Kuo, A. Lange, E. Leitch, C. Netterfield, H. Nguyen, R. Ogburn, A. Orlando, C. Pryke, C. Reintsema, S. Richter, J. Ruhl, M. Runyan, C. Sheehy, Z. Staniszewski, R. Sudiwala, J. E. Tolan, A. Turner, P. Wilson, C. L. Wong
We report on the preliminary detector performance of the Bicep2 mm-wave polarimeter, deployed in 2009 to
the South Pole. Bicep2 is currently imaging the polarization of the cosmic microwave background at 150 GHz
using an array of 512 antenna-coupled superconducting bolometers. The antennas, band-defining filters and
transition edge sensor (TES) bolometers are photolithographically fabricated on 4 silicon tiles. Each tile consists
of an 8×8 grid of ~7 mm spatial pixels, for a total of 256 detector pairs. A spatial pixel contains 2 sets of
orthogonal antenna slots summed in-phase, with each set coupled to a TES by a filtered microstrip. The detectors
are read out using time-domain multiplexed SQUIDs. The detector pair of each spatial pixel is differenced to
measure polarization. We report on the performance of the Bicep2 detectors in the field, including the focal
plane yield, detector and multiplexer optimization, detector noise and stability, and a preliminary estimate of
the improvement in mapping speed compared to Bicep1.
Bicep2 deployed to the South Pole during the 2009-2010 austral summer, and is now mapping the polarization
of the cosmic microwave background (CMB), searching for evidence of inflationary cosmology. Bicep2 belongs
to a new class of telescopes including Keck (ground-based) and Spider (balloon-borne) that follow on Bicep's
strategy of employing small, cold, on-axis refracting optics. This common design provides key advantages ideal
for targeting the polarization signature from inflation, including: (i) A large field of view, allowing substantial
light collecting power despite the small aperture, while still resolving the degree-scale polarization of the CMB;
(ii) liquid helium-cooled optics and cold stop, allowing for low, stable instrument loading; (iii) the ability to
rotate the entire telescope about the boresight; (iv) a baffled primary aperture, reducing sidelobe pickup; and
(v) the ability to characterize the far field optical performance of the telescope using ground-based sources. We
describe the last of these advantages in detail, including our efforts to measure the main beam shape, beammatch
between orthogonally-polarized pairs, polarization efficiency and response angle, sidelobe pickup, and
ghost imaging. We do so with ground-based polarized microwave sources mounted in the far field as well as
with astronomical calibrators. Ultimately, Bicep2's sensitivity to CMB polarization from inflation will rely on
precise calibration of these beam features.
We present a method of cross-calibrating the polarization angle of a polarimeter using Bicep Galactic observations.
Bicep was a ground based experiment using an array of 49 pairs of polarization sensitive bolometers
observing from the geographic South Pole at 100 and 150 GHz. The Bicep polarimeter is calibrated to ±0.01
in cross-polarization and less than ±0.7° in absolute polarization orientation. Bicep observed the temperature
and polarization of the Galactic plane (R.A = 100° ~ 270° and Dec. = -67° ~ -48°). We show that the
statistical error in the 100 GHz Bicep Galaxy map can constrain the polarization angle offset of Wmap W band
to 0.6° ± 1.4°. The expected 1σ errors on the polarization angle cross-calibration for Planck or EPIC are 1.3°
and 0.3° at 100 and 150 GHz, respectively. We also discuss the expected improvement of the Bicep Galactic
field observations with forthcoming Bicep2 and Keck observations.
R. W. Ogburn, P. Ade, R. Aikin, M. Amiri, S. Benton, J. Bock, J. Bonetti, J. Brevik, B. Burger, C. Dowell, L. Duband, J. Filippini, S. Golwala, M. Halpern, M. Hasselfield, G. Hilton, V. Hristov, K. Irwin, J. Kaufman, B. Keating, J. Kovac, C. Kuo, A. Lange, E. Leitch, C. Netterfield, H. Nguyen, A. Orlando, C. Pryke, C. Reintsema, S. Richter, J. Ruhl, M. Runyan, C. Sheehy, Z. Staniszewski, S. Stokes, R. Sudiwala, G. P. Teply, J. E. Tolan, A. Turner, P. Wilson, C. L. Wong
The Bicep2 telescope is designed to measure the polarization of the cosmic microwave background on angular
scales near 2-4 degrees, near the expected peak of the B-mode polarization signal induced by primordial gravitational
waves from inflation. Bicep2 follows the success of Bicep, which has set the most sensitive current limits
on B-modes on 2-4 degree scales. The experiment adopts a new detector design in which beam-defining slot antennas
are coupled to TES detectors photolithographically patterned in the same silicon wafer, with multiplexing
SQUID readout. Bicep2 takes advantage of this design's higher focal-plane packing density, ease of fabrication,
and multiplexing readout to field more detectors than Bicep1, improving mapping speed by nearly a factor of
10. Bicep2 was deployed to the South Pole in November 2009 with 500 polarization-sensitive detectors at 150
GHz, and is funded for two seasons of observation. The first months' data demonstrate the performance of the
Caltech/JPL antenna-coupled TES arrays, and two years of observation with Bicep2 will achieve unprecedented
sensitivity to B-modes on degree angular scales.
C. Sheehy, P. Ade, R. Aikin, M. Amiri, S. Benton, C. Bischoff, J. Bock, J. Bonetti, J. Brevik, B. Burger, C. Dowell, L. Duband, J. Filippini, S. Golwala, M. Halpern, M. Hasselfield, G. Hilton, V. Hristov, K. Irwin, J. Kaufman, B. Keating, J. Kovac, C. L. Kuo, A. Lange, E. Leitch, M. Lueker, C. Netterfield, H. T. Nguyen, R. Ogburn, A. Orlando, C. L. Pryke, C. Reintsema, S. Richter, J. Ruhl, M. Runyan, Z. Staniszewski, S. Stokes, R. Sudiwala, G. Teply, K. Thompson, J. E. Tolan, A. Turner, P. Wilson, C. L. Wong
The Keck Array is a cosmic microwave background (CMB) polarimeter that will begin observing from the South
Pole in late 2010. The initial deployment will consist of three telescopes similar to BICEP2 housed in ultracompact,
pulse tube cooled cryostats. Two more receivers will be added the following year. In these proceedings
we report on the design and performance of the Keck cryostat. We also report some initial results on the
performance of antenna-coupled TES detectors operating in the presence of a pulse tube. We find that the
performance of the detectors is not seriously impacted by the replacement of BICEP2's liquid helium cryostat
with a pulse tube cooled cryostat.
BICEP2/SPUD is the new powerful upgrade of the existing BICEP1 experiment, a bolometric receiver to study the
polarization of the cosmic microwave background radiation, which has been in operation at the South Pole since January
2006. BICEP2 will provide an improvement up to 10 times mapping speed at 150 GHz compared to BICEP1, using the
same BICEP telescope mount. SPUD, a series of compact, mechanically-cooled receivers deployed on the DASI mount
at the Pole, will provide similar mapping speed in to BICEP2 in three bands, 100, 150, and 220 GHz. The new system
will use large TES focal plane arrays to provide unprecedented sensitivity and excellent control of foreground
contamination.
Bicep is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature
on the B-mode polarization of the cosmic microwave background (CMB) at degree angular scales. Currently
in its third year of operation at the South Pole, Bicep is measuring the CMB polarization with unprecedented
sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints
on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument
calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the
first two years of the experiment is reviewed.
KEYWORDS: Bolometers, Photometry, Spectroscopy, Sensors, Temperature metrology, Field effect transistors, Data modeling, Signal detection, Interference (communication), Smoothing
The flight model of the SPIRE instrument underwent several test campaigns in a test facility at the Rutherford Appleton
Laboratory (RAL) in the UK. A final dark campaign, completed in March 2007, provided an environment virtually free
from optical radiation. This allowed re-determining the fundamental model parameters of the NTD spider web bolometer
detector arrays in the new environment. The tests reported in this paper produced a fairly homogeneous dataset to
investigate white noise and 1/f noise at different bias voltages, bias frequencies, and bath temperatures. We find that the
white noise performance is in excellent agreement with the model predictions, once we correct the low frequency signal
variations that are due to temperature fluctuations of the thermal bath at about 300 mK. The temperature of the thermal
bath (detector array base plate) is measured by thermistor pixels that are part of the bolometer arrays. A residual 1/f
component beyond those variations is hardly detected. This unexpected stability is very welcome and will positively
impact photometer scan maps, the most popular observing mode of SPIRE.
We describe the on-board electronics chain and the on-ground data processing pipeline that will operate on data from the
Herschel-SPIRE photometer to produce calibrated astronomical products. Data from the three photometer arrays will be
conditioned and digitised by on-board electronics and sent to the ground with no further on-board data processing. On
the ground, the data pipeline will process the data from point source, jiggle-map, and scan-map observations in a fully
automatic manner, producing measured flux densities (for point source observations) or maps. It includes calculation of
the bolometer voltages from the raw telemetry, glitch removal, and corrections for various effects including time
constants associated with the detectors and electronics, electrical and optical crosstalk, detector temperature drifts, flatfielding,
and non-linear response of the bolometers to strong sources. Flux density calibration will be with respect to
standard astronomical sources with the planets Uranus and Neptune being adopted as the baseline primary standards.
The pipeline will compute estimated values of in-beam flux density for a standard flat νS(ν) source spectrum.
SPIRE, the Spectral and Photometric Imaging Receiver, is a submillimetre camera and spectrometer for Herschel. It
comprises a three-band camera operating at 250, 350 and 500 µm, and an imaging Fourier Transform Spectrometer
covering 194-672 μm. The photometer field of view is 4x8 arcmin., viewed simultaneously in the three bands. The FTS
has an approximately circular field of view of 2.6 arcmin. diameter and spectral resolution adjustable between 0.04 and 2
cm-1 ( λ/▵λ=20-1000 at 250 μm). Following successful testing in a dedicated facility designed to simulate the in-flight
operational conditions, SPIRE has been integrated in the Herschel spacecraft and is now undergoing system-level testing
prior to launch. The main design features of SPIRE are reviewed, the key results of instrument testing are outlined, and
a summary of the predicted in-flight performance is given.
Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying
the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these
wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the
Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities.
We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive
FIR polarimeter. HAWC is a 12 × 32 pixel bolometer camera designed to cover the 53−215 μm spectral range
in 4 colors, all at diffraction-limited resolution (5−21 arcsec). Upgrade options include: (1) an external set of
optics which modulates the polarization state of the incoming radiation before entering the cryostat window;
(2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art
superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range
of science studies which will be possible with these upgrades including magnetic fields in star-forming regions
and galaxies and the wavelength-dependence of polarization.
We present a first cut instrument design package for the proposed 25 meter Cornell-Caltech Atacama Telescope (CCAT). The primary science for CCAT can be achieved through wide field photometric imaging in the short submillimeter through millimeter (200 μm to 2 mm) telluric windows. We present strawman designs for two cameras: a 32,000 pixel short submillimeter (200 to 650 μm) camera using transition edge sensed bare bolometer arrays that Nyquist samples (@ 350 μm) a 5'×5' field of view (FoV), and a 45,000 pixel long wavelength camera (850 μm to 2 mm) that uses slot dipole antennae coupled bolometer arrays with wavelength dependent sampling that covers up to a 20' square FoV. These are our first light instruments. We also anticipate "borrowed" instruments such as direct detection and heterodyne detection spectrometers will be available at, or nearly at first light.
SHARC-II is a 32 × 12 pixel submillimeter camera that is used with the ten-meter diameter Caltech Submillimeter
Observatory (CSO) on Mauna Kea. This camera can be operated at either 350 or 450 microns. We developed a module
that is installed at the CSO Nasmyth focus in order to convert SHARC-II into a sensitive imaging polarimeter, which we
refer to as "SHARP". SHARP splits the incident beam into two orthogonal polarized beams that are then re-imaged onto
different halves of the SHARC-II bolometer array. When this removable polarimetry module is in use, SHARC-II
becomes a dual-beam 12 × 12 pixel polarimeter. Sky noise is a significant source of error for submillimeter continuum
observations. Because SHARP will simultaneously observe two orthogonal polarization components, we are able to
eliminate or greatly reduce this source of error. Here we describe the design of SHARP and report preliminary results of
tests and observations carried out during our first two runs at CSO in August 2005 and January 2006.
The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17° with angular resolution of 55' and 37' at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations.
We describe progress toward realizing a new architecture for focal
plane arrays for the Submillimeter and Far-Infrared (FIR) bands.
This architecture is based on a detector design utilizing
distributed hot-electron transition edge sensors (TES) coupled to
slot antenna elements. Arrays utilizing this type of detector can be
considerably easier to manufacture than membrane-isolated TES
arrays, because the need for micro-machining is eliminated. We
present background and rationale for this new array architecture and
details of a new antenna design for an imaging polarimeter, which
yields greater bandwidth than past designs. In addition, we
describe a cryogenic facility for testing these arrays.
The Submillimeter High Angular Resolution Camera II (SHARC-II) is a 32 x 12 pixel submillimeter camera that is used with the ten-meter diameter Caltech Submillimeter Observatory (CSO) on Mauna Kea. SHARC-II can be operated at either 350 or 450 microns. We are developing an optics module that we will install at a position between the SHARC-II camera and the focus of the CSO's secondary mirror. With our module installed, SHARC-II will be converted into a sensitive imaging polarimeter. The basic idea is that the module will split the incident beam coming from the secondary into two orthogonally polarized beams which are then re-imaged onto opposite ends of the “long and skinny” SHARC-II bolometer array. When this removable polarimetry module is in use, SHARC-II becomes a dual-polarization 12 x 12 pixel polarimeter. (The central 12 x 8 pixels of the SHARC-II array will remain unused.) Sky noise is a significant source of error for submillimeter continuum observations. Because our polarimetry module will allow simultaneous observation of two orthogonal polarization components, we will be able to eliminate or greatly reduce this source of error. Our optical design will include a rotating half-wave plate as well as a cold load to terminate the unused polarization components.
The Stratospheric Observatory For Infrared Astronomy's (SOFIA's) High resolution Airborne Wideband Camera (HAWC) will use an ion-implanted silicon bolometer array developed at NASA's Goddard Space Flight Center (GSFC). The GSFC Pop-Up Detectors (PUDs) use a unique "folding" technique to enable a 12 x 32 element close-packed array of bolometers with a filling factor greater than 95%. The HAWC detector uses a resistive metal film on silicon to provide frequency independent, ~50% absorption over the 40 - 300 micron band. The silicon bolometers are manufactured in 32-element rows within silicon frames using Micro Electro Mechanical Systems (MEMS) silicon etching techniques. The frames are then cut, "folded", and glued onto a metallized, ceramic, thermal bus "bar". Optical alignment using micrometer jigs ensures their uniformity and correct placement. The rows are then stacked side-by-side to create the final 12 x 32 element array. A kinematic Kevlar suspension system isolates the 200 mK bolometer cold stage from the rest of the 4K detector housing. GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The Junction Field Effect Transistor (JFET) preamplifiers for all the signal channels operate at 120 K, yet they are electrically connected and located in close proximity to the bolometers. The JFET module design provides sufficient thermal isolation and heat sinking for these, so that their heat is not detected by the bolometers. Preliminary engineering results from the flight detector dark test run are expected to be available in July 2004. This paper describes the array assembly and mechanical and thermal design of the HAWC detector and the JFET module.
We describe the development, construction, and testing of two 384 element arrays of ion-implanted semiconducting cryogenic bolometers designed for use in far-infrared and submillimeter cameras. These two dimensional arrays are assembled from a number of 32 element linear arrays of monolithic Pop-Up bolometer Detectors (PUD) developed at NASA/Goddard Space Flight Center. PUD technology allows the construction of large, high filling factor, arrays that make efficient use of available focal plane area in far-infrared and submillimeter astronomical instruments. Such arrays can be used to provide a significant increase in mapping speed over smaller arrays. A prototype array has been delivered and integrated into a ground-based camera, the Submillimeter High Angular Resolution Camera (SHARC II), a facility instrument at the Caltech Submillimeter Observatory (CSO). A second array has recently been delivered for integration into the High-resolution Airborne Widebandwidth Camera (HAWC), a far-infrared imaging camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). HAWC is scheduled for commissioning in 2005.
We describe a new concept for a detector for the submillimeter and far infrared that uses a distributed hot-electron transition edge sensor (TES) to collect the power from a focal-plane-filling slot antenna array. Because superconducting transmission lines are lossy at frequencies greater than about 1 Thz, the sensors must directly
tap the antenna, and therefore must match the antenna impedance (≫ 30 ohms). Each pixel contains many TESs that are all wired in parallel as a single distributed TES, which results in a low impedance that can
match to a multiplexed SQUID readout. These detectors are inherently polarization sensitive, with very low cross-polarization, but can also be easily configured to sum both polarizations for imaging applications. The single polarization version can have a very wide bandwidth of greater than 10:1 with a quantum e±ciency greater than 50%. The dual polarization version is narrow band, but can have a higher quantum e±ciency. The use of electron-phonon decoupling obviates the need for micro-machining, making the focal plane much easier to fabricate than with absorber-coupled, geometrically isolated pixels. An array of these detectors would be suitable for an imager for the Single Aperture Far Infrared (SAFIR) observatory. We consider two near-term applications of this technology, a 32 £ 32 element imaging polarimeter for SOFIA and a 3501m camera for the CSO.
SHARC II is a background-limited 350 μm and 450 μm facility camera for the Caltech Submillimeter Observatory undergoing commissioning in 2002. The key component of SHARC II is a 12 × 32 array of doped silicon 'pop-up' bolometers developed at NASA/Goddard. Each 1 mm × 1 mm pixel is coated with a 400 Ω/square bismuth film and located λ/4 above a reflective backshort to achieve >75% absorption efficiency. The pixels cover the focal plane with >90% filling factor. At 350 μm, the SHARC II pixels are separated by 0.65 λ/D. In contrast to the silicon bolometers in the predecessor of SHARC II, each doped thermistor occupies nearly the full area of the pixel, which lowers the 1/f knee of the detector noise to <0.03 Hz, under load, at the bath temperature of 0.36 K. The bolometers are AC-biased and read in 'total power' mode to take advantage of the improved stability. Each bolometer is biased through a custom ~130 MΩ CrSi load resistor at 7 K and read with a commercial JFET at 120 K. The JFETs and load resistors are integrated with the detectors into a single assembly to minimize microphonic noise. Electrical connection across the 0.36 K to 4 K and 4 K to 120 K temperature interfaces is accomplished with lithographed metal wires on dielectric substrates. In the best 25% of winter nights on Mauna Kea, SHARC II is expected to have an NEFD at 350 μm of 1 Jy Hz-1/2 or better. The new camera should be at least 4 times faster at detecting known point sources and 30 times faster at mapping large areas compared to the prior instrument.
A far-infrared polarimeter, Hale, will be proposed for the next round of instruments for SOFIA. Key features are: simultaneous detection of two components of polarization; detector arrays providing >4000 pixels on the sky; and four passbands between 53 μm and 215 μm, a range characterized by strong dependence of polarization on wavelength. At 53 μm the diffraction-limited resolution, 1.2 λ/D, will be 5.2 arcsec. In all passbands the systematic errors in polarization will be Δ(P) < 0.2%, Δθ< 2 °.
The University of Chicago polarimeter, Hertz, is designed for observations at the Caltech Submillimeter Observatory in the 350 micrometer atmospheric window. Initial observations with this instrument, the first array polarimeter for submillimeter observations, have produced over 700 measurements at 3(sigma) or better. This paper summarizes the characteristics of the instrument, presents examples of its performance including polarization maps of molecular clouds and regions near the Galactic center, and outlines the opportunities for improvements with emphasis on requirements for mapping widely extended sources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.