Laser lithography tools have been a staple in the photomask industry for second level printing for several years. This paper explores the overlay capabilities of the Alta4300D Deep UV (DUV) lithography system. The tool is manufactured by ETEC Systems, a part of the Mask Business Group of Applied Materials. The tool demonstrates good overlay performance, and an improved data path ensures the ability to handle large file sizes without an adverse impact on writing time. In addition to actual performance data on product masks, a simple analysis of the maximum total edge placement error of a hypothetical two level alt-PSM process is presented. The results show the tool is capable for many advanced phase shift overlay applications.
In the recent past Deep Ultra Violet (DUV) Laser generated photomasks have gained widespread acceptance for critical and semi-critical applications in semi-conductor lithography. The advent of stable, highly capable, single-layer Chemically Amplified Resist (CAR) processes has made fabrication of this type of mask very robust in today's mask manufacturing environment. This platform affords mask makers benefits of the highly parallel architecture available in today's DUV Laser pattern generators - providing excellent cost and cycle time advantages when compared with alternative leading-edge processes using 50 KeV VSB e-beam systems. To date literature on this topic has focused mostly on characterization and optimization of DUV mask making processes. Meanwhile treatment of the resultant aerial image for critical litho applications has been largely ignored. In this paper details of the aerial image produced using DUV Laser generated photomasks will be detailed. Both 248nm and 193nm source printing with multiple types of illumination will be discussed. Details of a print test comparison performed on photomasks from two popular mask lithography platforms in use today; DUV, and 50 KeV VSB, will be documented. Finally, the most recent process improvements achieved in DUV Laser mask fabrication will be detailed. Special attention will be given to the impact of these enhancements on image quality.
In the recent past significant work has been done to isolate and characterize suitable single layer Chemically Amplified Resist (CAR) systems for DUV printing applicable to photomask fabrication. This work is complicated by the inherent instability of most DUV CAR systems, particularly in air, showing unacceptable CD degradation over the normal photomask write time in today’s DUV mask pattern generators. The high reflectivity of most photomask substrates at DUV wavelengths, creating unacceptable standing waves in the photo resist profile, further compounds this problem. A single layer CAR system suitable for 90nm technology node mask fabrication with DUV printing has been characterized and optimized. Results of this optimization in terms of relevant mask making parameters will be detailed. Furthermore, comparison of the properties of this resist system to other commercially available systems, including FEP-171, will be shown. The pattern fidelity of DUV laser generated masks has been studied in considerable detail. A demonstration of the capabilities of the Etec Systems ALTA 4300 will be shown. The pattern fidelity achieved will be compared/contrasted to that achieved with today’s leading edge 50KeV vector scan e-beam systems. Advanced methods for modulating the DUV printed patterns’ fidelity will be detailed.
Finally, the cost and cycle time implications of inserting the DUV laser pattern generator into the mask manufacturing flow will be discussed.
In the recent past significant work has been done to isolate and characterize suitable single layer Chemically Amplified Resist (CAR) systems for DUV printing applicable to photomask fabrication. This work is complicated by the inherent instability of most DUV CAR systems, particularly in air, showing unacceptable CD degradation over the normal photomask write time in today's DUV mask pattern generators. The high reflectivity of most photomask substrates at DUV wavelengths, creating unacceptable standing waves in the photo resist profile, further compounds this problem. A single layer CAR system suitable for 90nm technology node mask fabrication with DUV printing has been characterized and optimized. Results of this optimization in terms of relevant mask making parameters will be detailed. Furthermore, comparison of the properties of this resist system to other commercially available systems, including FEP-171, will be shown. The pattern fidelity of DUV laser generated masks has been studied in considerable detail. A demonstration of the capabilities of the Etec Systems ALTATM 4300 and Micronic Laser Systems Sigma 7100 DUV mask writing systems will be shown. The pattern fidelity achieved will be compared/contrasted to that achieved with today's leading edge 50KeV vector scan e-beam systems. Advanced methods for modulating the DUV printed patterns' fidelity will be detailed.
Finally, the cost and cycle time implications of inserting the DUV laser pattern generator into the mask manufacturing flow will be discussed.
Reticle defects are one leading source of yield loss. This paper is a continuation of work begun to track defect sources to the process steps that generate them. Prior work was done on a common electron beam resist. This study will examine a DUV optical chemically amplified resist.
Elimination of photomask defects requires identifying the sources of contaminants at each process step. Current industry practice is to perform defect inspection at the end of processing. This makes determining the source of defect generators extremely difficult. This paper presents data taken from inspections performed immediately following the principal processing steps done in photomask manufacture. The KLA-Tencor SLF27 TeraStar™ inspection tool was used to inspect a generic test pattern after developing, etching and stripping of the resist.
New reticle designs frequently contain mask features the inspection tools find objectionable. Typically these illegal features are handled in one of two ways. They are removed from the database with “do not inspect” regions, or the sensitivity is compromised to a level sufficient to reduce these nuisance defects to a tolerable level. Using the inspection machine to find these areas is both costly and inefficient. This paper presents a survey of the Manufacturing Rules Check option available from Transcription Enterprises to screen the database for these features before the reticle goes to inspection.
The Verimask inspection standard is widely used to qualify inspection systems due to its simplicity, ease of use in a production environment, and readily understandable defect sensitivity table. The Verimask's major drawback is that it does not characterize the runability of an inspection system. Runability refers to the system's ability to inspect various pattern types, a critical characteristic of inspection systems used for mask manufacturing. Comprehensive inspection system capability evaluation should include both sensitivity and runability tests. Other inspection test masks suffer the same shortcoming of Verimask, providing simple sensitivity analysis without runability evaluation. The Universal Inspection Standard was developed to expand the Verimask's sensitivity test and to provide a runability test. The UIS runability module contains several typical industrial feature types at multiple technology nodes. We have used UIS to evaluate and benchmark inspection system and algorithms. Future UIS versions will be available with different feature and defect types to keep pace with inspection system development. In short, UIS provides a means to quantify an inspection system's runability in addition to the traditional sensitivity evaluation.
In this paper, we describe pinhole detectivity using both pattern inspection and STARlight inspection. Examples of STARlight inspection of naturally-occurring pinholes are shown as well. Small pinholes are not be easily detected by pattern inspectors and are rarely detected by laser-based scatterometers. The construction of the programmed defect mask is described, and inspection tool performance on programmed defects is quantified. In addition, printability of selected defects is assessed by AIMS and correlated to inspection tool detectivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.