This talk shows the recent development of linear and Geiger-mode pseudo-planar Ge-on-Si avalanche photodiodes (APDs) in the short-wave infrared region. We demonstrate a 26 µm-diameter Ge-on-Si Geiger-mode APD with an extremely low noise-equivalent-power of 7.7 × 10−17 WHz−½ and a jitter value of 134 ± 10 ps at 1310 nm wavelength and at 100 K operating temperature. We demonstrate that a linear array of Ge-on-Si linear mode APDs comprising of 10 pixels shows high responsivity, highly uniform avalanche breakdown voltage and avalanche gain at 1550 nm wavelength and at room temperature.
Germanium-on-silicon (Ge-on-Si) single photon avalanche diodes (SPADs) operating in the short-wave infrared (SWIR) have various applications such as long-range eye-safe LIDAR, quantum imaging, and quantum key distribution. These SPADs offer compatibility with Si foundries and potential cost advantages over existing InGaAs/InP devices. However, cooling is necessary to reduce dark-count rates (DCR), which limits photon absorption at 1550 nm wavelength. To address this, we propose integrating a photonic crystal (PC) nano-hole array structure on the Ge absorber layer. While this technique has shown enhanced responsivity in linear Ge detectors, its potential in Ge-on-Si SPADs remains unexplored. Our simulations consider temperature dependence and the impact of electric-field hot-spots on dark count rates. Through these simulations, we have identified means of enhancing single-photon detection efficiency (SPDE) without adversely affecting DCR. We predict significant improvements in performance, including at least a 2.5x enhancement in absorption efficiency.
KEYWORDS: Single photon avalanche diodes, Passivation, Design, Germanium, Silicon, Monte Carlo methods, Short wave infrared radiation, Ozone, Engineering, Diffusion
Single Photon Avalanche Diodes (SPADs) are semiconductor devices capable of accurately timing the arrival of single photons of light. Previously, we have demonstrated a pseudo-planar Ge-on-Si SPAD that operates in the short-wave infrared, which can be compatible with Si foundry processing. Here, we investigate the pseudo-planar design with simulation and experiment to establish the spatial contributions to the dark-count rate, which will ultimately facilitate optimisation towards operation at temperatures compatible with Peltier cooler technologies.
KEYWORDS: Single photon avalanche diodes, Electric fields, Monte Carlo methods, Short wave infrared radiation, Design and modelling, TCAD, Device simulation, Germanium, Silicon photonics
Single photon avalanche diodes (SPADs) are semiconductor photodiode detectors capable of detecting individual photons, typically with sub-ns precision timing. We have previously demonstrated novel pseudo-planar germanium-on-silicon SPADs with absorption into the short-wave infrared, which promise lower costs and potentially easier CMOS integration compared to III-V SPADs. Here we have simulated the dark count rate of these devices, using a custom solver for McIntyre’s avalanche model and a trap assisted tunnelling generation model. Calibration and fitting have been performed using experimental data and the results have highlighted areas in which the technology can be optimised.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.