Digital micromirror devices (DMDs), owing to their rapid refresh rates, are among the most commonly used spatial light modulators in holographic three-dimensional near-eye displays. However, the modulation of DMD is typically confined to binary amplitude modulation, resulting in a noticeable presence of zero-order and conjugate noise, which significantly occupies the spatial bandwidth of the display optics and reduces the quality of optical reconstruction. To address these issues, we propose a computational framework of generating optimized binary computer-generated holograms for DMD-based holographic near-eye displays. Our work employs an iterative-based optimization strategy within a band-limited diffraction computation, thereby enhancing the display quality while achieving a considerable field of view by eliminating zero-order and conjugate noise. The proposed method is verified experimentally by displaying true three-dimensional images with low speckle noise and high contrast, opening a path towards next-generation of virtual reality/augmented reality display devices.
KEYWORDS: Computer generated holography, Holograms, Diffraction, Holography, 3D modeling, Wavefronts, 3D image reconstruction, 3D displays, Holographic displays, 3D acquisition
Holographic display stands as a prominent approach for achieving lifelike three-dimensional (3D) reproductions with continuous depth sensation. However, the generation of a computer-generated hologram (CGH) always relies on the repetitive computation of diffraction propagation from point-cloud or multiple depth-sliced planar images, which inevitably leads to an increase in computational complexity, making real-time CGH generation impractical. Here, we report a new CGH generation algorithm capable of rapidly synthesizing a 3D hologram in only one-step backward propagation calculation in a novel split Lohmann lens-based diffraction model. By introducing an extra predesigned virtual digital phase modulation of multifocal split Lohmann lens in such a diffraction model, the generated CGH appears to reconstruct 3D scenes with accurate accommodation abilities across the display contents. Compared with the conventional layer-based method, the computation speed of the proposed method is independent of the quantized layer numbers, and therefore can achieve real-time computation speed with a very dense of depth sampling. Both simulation and experimental results validate the proposed method.
We present a holographic method for augmented reality near-eye display system based on the projection of a digital amplitude-only computer-generated hologram (AO-CGH) on a DMD. The operating principle is based upon Fresnel holography and spatial light modulator encodings. The resultant system can display a high-resolution 3D image with accurate depth cues. Furthermore, we fully utilize the diffraction bandwidth of the hologram by eliminating the DC and conjugation noise, providing a simple solution to a long-standing problem in holographic displays. As a result, our system is low cost and compact, lending credence to consumer AR applications.
This paper proposes a method for calculating phase-only computer-generated hologram (CGH) in holographic display with reduced speckle noise. The method works by encoding the desired complex-amplitude field of object into a phase-only CGH by a linear canonical transform algorithm. The complex-amplitude field can then be reconstructed independently from the encoded CGH using a filter at the Fourier plane of a single-lens optical system. The feasibility and effectiveness of the proposed method was verified by a simulation experiment. An optical experiment for holographic display was also conducted with reduced speckle using a single phase-only spatial-light modulator. The object was, in fact, reconstructed with different depth of focus clearly without speckle noise due to the simultaneous modulation of both amplitude and phase, confirming our method’s ability to suppress speckle noise in holographic displays by modulating complex amplitude in three-dimensional space.
We proposed a new method to calculate the color computer generated hologram of three-dimensional object in holographic display. The three-dimensional object is composed of several tilted planes which are tilted from the hologram. The diffraction from each tilted plane to the hologram plane is calculated based on the coordinate rotation in Fourier spectrum domains. We used the nonuniform fast Fourier transformation (NUFFT) to calculate the nonuniform sampled Fourier spectrum on the tilted plane after coordinate rotation. By using the NUFFT, the diffraction calculation from tilted plane to the hologram plane with variable sampling rates can be achieved, which overcomes the sampling restriction of FFT in the conventional angular spectrum based method. The holograms of red, green and blue component of the polygon-based object are calculated separately by using our NUFFT based method. Then the color hologram is synthesized by placing the red, green and blue component hologram in sequence. The chromatic aberration caused by the wavelength difference can be solved effectively by restricting the sampling rate of the object in the calculation of each wavelength component. The computer simulation shows the feasibility of our method in calculating the color hologram of polygon-based object. The 3D object can be displayed in color with adjustable size and no chromatic aberration in holographic display system, which can be considered as an important application in the colorful holographic three-dimensional display.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.