A new fiber-type Li-ion battery that consists of carbon nanotube fibers deposited with active materials has been developed and tested. The active materials, LiMn2O4 and Li4Ti5O12, were deposited on the surface of carbon nanotube fibers in order to use as electrodes. Tensile strength of the CNT fibers with active material was measured by tensile tests to investigate the mechanical characteristics. Electrochemical property is also measured by a battery tester during charging and discharging. The results show that current discharge capacity is about 25 mAh/g between 3.0 V and 4.2 V. That means the fiber with active materials is good for an anode electrode. Mathematical material models considering the lithium concentration and the length of Li-C bond have been established in order to predict the effective elastic modulus of electrode composite materials.
An efficient design analysis method for cantilevered beam-type piezoelectric energy harvesters was developed for the
prediction of the electric power output, based on the finite element method and the design optimization of piezoelectric
materials. The optimum topology of a piezoelectric material layer could be obtained by a newly developed topology
optimization technique for piezoelectric materials which utilized the electromechanical coupling equations, MMA
(method of moving asymptotes), and SIMP (solid isotropic material with penalization) interpolation. Using the design
optimization tool, several cantilevered beam-type piezoelectric energy harvesters which fluctuated in the region of vortex
shedding were developed, that consisted of two different material layers - piezoelectric and aluminum layers. In order to
obtain maximum electric power, the exciting frequency of the cantilevered energy device must be tuned as close to the
natural frequency of the beam as possible. Using the method, the effects of geometric parameters and several
piezoelectric materials (PZT, PVDF, and PZT fiber composites) attached to the beam device on power generation were
investigated and the electric characteristics were evaluated. The three kinds of material coefficients such as elasticity,
capacitance, and piezoelectric coupling are interpolated by element density variables. Then, the shape and size design
optimizations for the cantilevered beam geometries with an optimum piezoelectric topology have been performed for a
base model.
Shape memory alloys (SMAs) find many applications in smart composite structural systems as the active components. Their ability to provide a high force and large displacement makes them an excellent candidate for an actuator for controlling the shape of smart structures. In this paper, using a macroscopic model that captures the thermo-mechanical behaviors and the two-way shape memory effect (TWSME) of SMAs smart morphing polymeric composite shell structures like shape-changeable UAV wings is demonstrated and analyzed numerically and experimentally when subjected to various kinds of pressure loads. The controllable shapes of the morphing shells to that thin SMA strip actuator are attached are investigated depending on various phase transformation temperatures. SMA strips start to transform from the martensitic into the austenitic state upon actuation through resistive heating, simultaneously recover the prestrain, and thus cause the shell structures to deform three dimensionally. The behaviors of composite shells attached with SMA strip actuators are analyzed using the finite element methods and 3-D constitutive equations of SMAs. Several morphing composite shell structures are fabricated and their experimental shape changes depending on temperatures are compared to the numerical results. That two results show good correlations indicates the finite element analysis and 3-D constitutive equations are accurate enough to utilize them for the design of smart composite shell structures for various applications.
An approximate relationship between strain and applied potential was derived for composite actuators consisting of single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). During deriving the relationships, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the composite film actuator. This relationship can give us a direct understanding of the actuation of a nanoactuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both the SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. Optimizations of SWNTs-CPs composite actuator may be achieved by using well-aligned method as well as choosing suitable electrolyte and input voltage range.
Shape memory alloys (SMAs) are often used in smart materials and structures as the active components. Their ability to provide a high force and large displacement has been useful in many applications, including devices for damage control, active structural acoustic control, dynamic tuning, and shape control. The paper presents a macroscopic mathematical model which captures the thermomechanical behaviors and the two-way shape memory effect (TWSME) of SMAs, and SMA applications as an actuator to control the shape of a circular composite cylinder where a thin SMA layer actuator is bonded inside the cylinder is investigated numerically. The circular composite cylinder with the thin SMA layer was designed and analyzed to determine the feasibility of such a system for the removal of stiffeners from externally pressurized stiffened composite structures. SMAs start to transform from the martensitic into the austenitic state upon actuation through resistive heating, simultaneously recover the prestrain, and thus cause the composite cylinder to expand in the radial direction. The externally pressurized composite cylinder with the SMA actuators was analyzed using the 3-D finite element method.
A numerical method for the performance evaluation of LIPCA actuators is proposed using a finite element method. Fully-coupled formulations for piezo-electric materials are introduced and eight-node incompatible elements used. After verifying the developed code, the behavior of LIPCA actuators is investigated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.