Physical properties and alignment performance of biphenyl and terphenyl negative dielectric anisotropic liquid crystal (LC) compounds are investigated. Results show biphenyl compounds align well in homeotropic LC cells and the alignment of terphenyls are relatively poor. We have developed a new method to align these high birefringence LC compounds. Adding a few percent of positive dielectric anisotropic or nonpolar LC material not only enhances the contrast ratio but also improves the overall figure-of-merit. Molecular modeling and experimentation are demonstrated to support this concept.
High birefringence liquid crystals (LCs) play an important role for laser beam steering, tunable-focus lens, reflective display, cholesteric LC laser, infrared dynamic scene projector, and telecom variable optical attenuator applications. We have developed some high birefringence compounds and eutectic mixtures with birefringence in the 0.4-0.7 range. For some photonic devices where response time is critical, we have also developed high birefringence dual-frequency LC mixtures. The cross-over frequency is around 5-10 kHz. Using such a dual-frequency LC mixture, sub-millisecond response time is achieved.
We have developed a non-contact birefringence probing method for studying the dielectric heating-induced temperature rise of dual-frequency liquid crystals (DFLCs). The dielectric heating effects of three DFLC mixtures are investigated quantitatively. By properly choosing the molecular structures, the dielectric heating effect can be minimized while keeping other desirable physical properties uncompromised.
The UV stability of empty liquid crystal (LC) cells incorporating commercial polyimide (PI) and silicon-dioxide (SiO2) alignment layers under nitrogen environment and the vacuum-filled LC cells were studied. Experimental results show that the molecular alignment of PI cells is degraded after 10 hours of UV (l~365 nm) illumination at intensity I~350 mW/cm2. Two commercial TFT-grade LC mixtures (low birefringence MLC-9200-000 and high birefringence TL-216) exhibit a longer lifetime in SiO2 cells than in PI cells. Moreover, MLC-9200-000 has a much longer lifetime than TL-216. To lengthen the lifetime of a LCD projector, UV transparent PI layers or inorganic SiO2 layers, high optical density UV filter, longer cutoff-wavelength blue filter, and low birefringence LC materials should be considered.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.