In pharmaceutical research, optical coherence tomography (OCT) has been used for the assessment of diseases such as age-related macular degeneration (AMD) and retinal pigment epithelial (RPE) atrophy on animals in pre-clinical studies. To measure the thickness of the total retina and individual retina layers on these OCT images, it is necessary to perform accurate segmentation which is known to be a labor-intensive and error-prone task especially on images of diseased animals with significant retina distortion. Herein we elect to perform automated segmentation of retina layers on the OCT images of rodent subjects using deep convolutional neural networks (CNN). Based on a U-Net architecture, we perform segmentation of three most important retina layers using U-Net CNN models trained with three different strategies: Training from scratch, transfer learning, and continued training from a pre-trained model of a different animal cohort. To compare the three strategies, three models are trained and tested on OCT scans of rodent subjects, and the segmentation results are compared with manually corrected delineations using Dice similarity coefficient (DSC) as a measure of accuracy. Results show that although all three strategies lead to similar performance, transfer learning and continued training are effective in accelerating the training process, while continued training manages to generate the most accurate results that are also the most plausible via visual inspections.
In the development of treatments for cardiovascular diseases, short axis cardiac cine MRI is important for the assessment of various structural and functional properties of the heart. In short axis cardiac cine MRI, Cardiac properties including the ventricle dimensions, stroke volume, and ejection fraction can be extracted based on accurate segmentation of the left ventricle (LV) myocardium. One of the most advanced segmentation methods is based on fully convolutional neural networks (FCN) and can be successfully used to do segmentation in cardiac cine MRI slices. However, the temporal dependency between slices acquired at neighboring time points is not used. Here, based on our previously proposed FCN structure, we proposed a new algorithm to segment LV myocardium in porcine short axis cardiac cine MRI by incorporating convolutional long short-term memory (Conv-LSTM) to leverage the temporal dependency. In this approach, instead of processing each slice independently in a conventional CNN-based approach, the Conv-LSTM architecture captures the dynamics of cardiac motion over time. In a leave-one-out experiment on 8 porcine specimens (3,600 slices), the proposed approach was shown to be promising by achieving average mean Dice similarity coefficient (DSC) of 0.84, Hausdorff distance (HD) of 6.35 mm, and average perpendicular distance (APD) of 1.09 mm when compared with manual segmentations, which improved the performance of our previous FCN-based approach (average mean DSC=0.84, HD=6.78 mm, and APD=1.11 mm). Qualitatively, our model showed robustness against low image quality and complications in the surrounding anatomy due to its ability to capture the dynamics of cardiac motion.
In developing treatment of cardiovascular diseases, short axis cine MRI has been used as a standard technique for
understanding the global structural and functional characteristics of the heart, e.g. ventricle dimensions, stroke volume
and ejection fraction. To conduct an accurate assessment, heart structures need to be segmented from the cine MRI
images with high precision, which could be a laborious task when performed manually. Herein a fully automatic
framework is proposed for the segmentation of the left ventricle from the slices of short axis cine MRI scans of porcine
subjects using a deep learning approach. For training the deep learning models, which generally requires a large set of
data, a public database of human cine MRI scans is used. Experiments on the 3150 cine slices of 7 porcine subjects have
shown that when comparing the automatic and manual segmentations the mean slice-wise Dice coefficient is about
0.930, the point-to-curve error is 1.07 mm, and the mean slice-wise Hausdorff distance is around 3.70 mm, which
demonstrates the accuracy and robustness of the proposed inter-species translational approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.