Cardiac magnetic resonance imaging (CMR) is considered the gold-standard imaging modality for volumetric analysis of the right ventricle (RV), an especially important practice in evaluation of heart structure and function in patients with repaired Tetralogy of Fallot (rTOF). In clinical practice, however, this requires time-consuming manual delineation of the RV endocardium in multiple 2-dimensional (2D) slices at multiple phases of the cardiac cycle. In this work, we employed a U-Net based 2D-Convolutional Neural Network (CNN) classifier in the fully automatic segmentation of the RV blood pool. Our dataset was comprised of 5,729 short-axis cine CMR slices taken from 100 individuals with rTOF. Training of our CNN model was performed on images from 50 individuals while validation was performed on images from 10 individuals. Segmentation results were evaluated by Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). Use of the CNN model on our testing group of 40 individuals yielded a median DSC of 90% and a median 95th percentile HD of 5.1 mm, demonstrating good performance in these metrics when compared to literature results. Our preliminary results suggest that our method can be effective in automating RV segmentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.