The Keck Interferometer (KI) combines the two 10m diameter Keck telescopes providing milliarcsecond angular
resolution. KI has unique observing capabilities such as sensitive K-band V2, L-band V2 and N-band nulling modes. The
instrument improvements and status of the Keck Interferometer since the 2010 SPIE meeting are summarized. We
discuss the current capabilities of the KI, operational improvements, and the science from the KI during the past two
years. We will conclude with a brief note on the closure of the KI facility. Details of dual field phase referencing
developments and nulling science results are presented elsewhere at this conference.
Ground-baseed long baselinne interferomeeters have lonng been limiteed in sensitiviity by the shoort integration periods imposed by atmospheric tuurbulence. Thee first observaation fainter thhan this limit wwas performedd on January 222, 2011 when the Keck Interferommeter observedd a K=11.5 taarget, about onne magnitude fainter than iits K=10.3 limmit. This observation wwas made posssible by the Duual Field Phase Referencing instrument of the ASTRA pproject: simultaaneously measuring thhe real-time efffects of the atmmosphere on a nearby bright guide star, andd correcting foor it on the fainnt target, integration tiime longer thaan the turbulennce time scale are made possible. As a preelude to this ddemonstration, we first present the implementatioon of Dual FField Phase RReferencing onn the interferoometer. We tthen detail itss on-sky performance focusing on tthe accuracy oof the turbulennce correction, and on the reesulting fringe contrast stabiility. We conclude witth a presentatioon of early resuults obtained wwith Laser Guidde Star AO andd the interferommeter.
ASTRA (ASTrometric and phase-Referencing Astronomy) is an upgrade to the existing Keck Interferometer
which aims at providing new self-phase referencing (high spectral resolution observation of YSOs), dual-field
phase referencing (sensitive AGN observations), and astrometric (known exoplanetary systems characterization
and galactic center general relativity in strong field regime) capabilities. With the first high spectral resolution
mode now offered to the community, this contribution focuses on the progress of the dual field and astrometric modes.
Recently, the Keck interferometer was upgraded to do self-phase-referencing (SPR) assisted K-band spectroscopy at R ~ 2000. This means, combining a spectral resolution of 150 km/s with an angular resolution of 2.7 mas, while maintaining
high sensitiviy. This SPR mode operates two fringe trackers in parallel, and explores several infrastructural requirements
for off-axis phase-referencing, as currently being implemented as the KI-ASTRA project. The technology of self-phasereferencing
opens the way to reach very high spectral resolution in near-infrared interferometry. We present the scientific
capabilities of the KI-SPR mode in detail, at the example of observations of the Be-star 48 Lib. Several spectral lines of the
cirumstellar disk are resolved. We describe the first detection of Pfund-lines in an interferometric spectrum of a Be star, in
addition to Br γ. The differential phase signal can be used to (i) distinguish circum-stellar line emission from the star, (ii) to directly measure line asymmetries tracing an asymetric gas density distribution, (iii) to reach a differential, astrometric
precision beyond single-telescope limits sufficient for studying the radial disk structure. Our data support the existence of
a radius-dependent disk density perturbation, typically used to explain slow variations of Be-disk hydrogen line profiles.
The Keck Interferometer (KI) combines the two 10m diameter Keck telescopes providing milliarcsecond angular
resolution. KI has unique observing capabilities such as sensitive K-band V2, L-band V2 and N-band nulling operations. The instrument status of the Keck Interferometer since the last SPIE meeting in 2008 is summarized. We discuss the
performance of new visibility observing capabilities including L-band and self-phase referencing modes. A simultaneous
dual-beam-combiner mode in the K and L-band has been demonstrated, nearly doubling operational efficiency for bright
targets. Operational improvements including simplified reliable operations with reduced personnel resources are
highlighted. We conclude with a brief review of the current and future developmental activities of KI. Details of ASTRA
developments, nulling performance and science results are presented elsewhere at this conference.
The Keck Interferometer combines the two 10 m Keck telescopes as a long baseline interferometer, funded by
NASA, as a joint development among the Jet Propulsion Laboratory, the W. M. Keck Observatory, and the
Michelson Science Center. Since 2004, it has offered an H- and K-band fringe visibility mode through the Keck
TAC process. Recently this mode has been upgraded with the addition of a grism for higher spectral resolution.
The 10 um nulling mode, for which first nulling data were collected in 2005, completed the bulk of its engineering
development in 2007. At the end of 2007, three teams were chosen in response to a nuller key science call to
perform a survey of nearby stars for exozodiacal dust. This key science observation program began in Feb. 2008.
Under NSF funding, Keck Observatory is leading development of ASTRA, a project to add dual-star capability for
high sensitivity observations and dual-star astrometry. We review recent activity at the Keck Interferometer, with an
emphasis on the nuller development.
The Keck Interferometer combines the two 10m diameter Keck telescopes for near-infrared fringe visibility, and mid-infrared
nulling observations. We report on recent progress with an emphasis on new visibility observing capabilities,
operations improvements for visibility and nulling, and on recent visibility science. New visibility observing capabilities
include a grism spectrometer for higher spectral resolution. Recent improvements include a new AO output dichroic for
increased infrared light throughput, and the installation of new wave-front controllers on both Keck telescopes. We also
report on recent visibility results in several areas including (1) young stars and their circumstellar disks, (2) pre-main
sequence star masses, and (3) Circumstellar environment of evolved stars. Details on nuller instrument and nuller science
results, and the ASTRA phase referencing and astrometry upgrade, are presented in more detail elsewhere in this
conference.
In this paper we report on progress at the Keck Interferometer since the 2004 SPIE meeting with an emphasis on the operations improvements for visibility science.
The Keck Interferometer Nuller (KIN) will be used to examine nearby stellar systems for the presence of circumstellar exozodiacal emission. A successful pre-ship review was held for the KIN in June 2004, after which the KIN was shipped to the Keck Observatory. The integration of the KIN's many sub-systems on the summit of Mauna Kea, and initial on-sky testing of the system, has occupied the better part of the past year. This paper describes the KIN system-level configuration, from both the hardware and control points of view, as well as the current state of integration of the system and the measurement approach to be used. During the most recent on-sky engineering runs in May and July 2005, all of the sub-systems necessary to measure a narrowband null were installed and operational, and the full nulling measurement cycle was carried out on a star for the first time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.