Designing effective local descriptors is crucial for many computer vision tasks such as image matching and patch verification. We propose a convolutional neural network (CNN)-based local descriptor named DHNet with a considerate sampling strategy and a dedicated loss function. By considerate sampling, both the closest nonmatching sample and the farther matching sample can be obtained for effectively training a discriminative model. In addition, an improved triplet loss is designed by adding a constraint that limits the absolute distance for the closest nonmatching pair. Based on hard samples and the constraint, our lightweight CNN can quickly generate local descriptors with enhanced intraclass compactness and interclass separation. Experimental results show that our method significantly outperforms the state-of-the-art methods in terms of strong discrimination ability, as evidenced by a considerable performance improvement on several benchmarks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.