We have developed an automated, wide-field optical coherence tomography (OCT)-based imaging device (OTISTM Perimeter Medical Imaging) for peri-operative, ex-vivo tissue imaging. This device features automated image acquisition, enabling rapid capture of high-resolution (15 μm) OCT images from samples up to 10 cm in diameter. We report on the iterative progression of device development from phantom and pre-clinical (tumor xenograft) models through to initial clinical results. We discuss the challenges associated with proving a novel imaging technology against the clinical “gold standard” of conventional post-operative pathology.
Traditional spectrometer design requires trading off between resolution and throughput (two key parameters which define performance) and physical size. Increasing the internal beam diameter is the simplest method of improving the performance of an otherwise optimized spectrometer. Sadly, this increased beam size also directly translates into increased system volume, weight, and cost. Functional limitations on size (and thus performance) can also prevent spectroscopy from being used in applications where it would otherwise be a perfect fit. Tornado Spectral Systems’ (TSS) High Throughput Virtual Slit (HTVS) redefines the performance-size limit by replacing the traditional slit in a spectrometer, allowing for designs that exceed traditional limitations on size and performance. Spectrometers can be made smaller while maintaining performance or system performance can be increased without increasing spectrometer size. Dispersive spectrometer theory is presented and used to construct a simulation that evaluated spectrometer performance based on volume for a slit-only and HTVS enabled instrument. Results show that as long as detector height is a non-limiting factor, HTVS enabled spectrometers have the potential to outperform slit-only spectrometers by factors up to several at equivalent volumes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.