This paper, “ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Recent progress on the development of a long-range, high-resolution 3D active imaging sensor is described. Diffraction limited angular resolution of 20μrad and sub-metre down range resolution are demonstrated at stand-off ranges of 8km. A scanned single pixel arrangement was employed using an all-fiber coherent lidar operating in a chirp-pulse-compression mode. The monostatic antenna had an aperture of 150mm and the image was built up using a piezoelectric tip/tilt stage positioned prior to the final expansion of the beam. Transmit/receive multiplexing was achieved with a fiber optic circulator. Examples of recently acquired images consisting of 150x150 pixels with 1000, 30cm range cells per pixel at a stand-off range 8km are presented.
The remote detection and identification of liquid chemical contamination is a difficult problem for which no satisfactory solution has yet been found. We have investigated a new technique, pulsed indirect photoacoustic spectroscopy (PIPAS), and made an assessment of its potential for operation at stand-off ranges of order 10m. The method involves optical excitation of the liquid surface with a pulsed laser operating in the 9-11μm region. Pulse lengths are of order 3μs, with energy ~300μJ and repetition rates ~200Hz. Rapid heating of the liquid by the laser pulse produces acoustic emission at the surface, and this is detected by a sensitive directional microphone to increase the signal-to-noise ratio and reduce background clutter. The acoustic pulse strength is related to the liquid's absorption coefficient at the laser wavelength; tuning allows spectroscopic investigation and a means of chemical identification. Maximum coverage rates have been examined, and further experiments have examined the specificity of the technique, allowing a preliminary assessment of false-alarm and missed-signal rates. The practical aspects of applying the technique in a field environment have been assessed.
High resolution ground mapping is of interest for survey and management of long linear features such as roads, railways and pipelines, and for georeferencing of areas such as flood plains for hydrological purposes. ATLAS (Airborne Topographic Laser System) is an active linescan system operating at the eyesafe wavelength of 1.5μm. Built for airborne survey, it is currently certified for use on a Twin Squirrel helicopter for operation from low levels to heights above 500 feet allowing commercial survey in built up areas. The system operates at a pulse repetition frequency of 56kHz with a line completed in 15ms, giving 36 points/m2 at the surface at the design flight speed. At each point the range to the ground is measured together with the scan angle of the system. This data is combined with a system attitude measurement from an integrated inertial navigation system and with system position derived from differential GPS data aboard the platform. A recording system captures the data with a synchronised time-stamp to enable post-processed reconstruction of a cloud of data points that will give a three-dimensional representation of the terrain, allowing the points to be located with respect to absolute Earth referenced coordinates to a precision of 5cm in three axes. This paper summarises the design, harmonisation, evaluation and performance of the system, and shows examples of survey data.
The phenomenon of thermal emission form non-volatile liquid surface coatings following pulsed laser heating has been experimentally and theoretically studied with a view to developing a differential thermal imaging scheme for the remote detection of contaminated surfaces. Pulsed UV and IR laser sources have been used to generate radiance profiles from contaminants which are correlated with their characteristic spectra. Data from experiments and numerical simulations are compared and a reasonable level of agreement is demonstrated.
AEROSPATIALE, leading a European team, has just conducted a successful study, under ESA contract, to demonstrate the feasibility of a spaceborne Doppler wind lidar instrument meeting the scientific requirements of wind velocity measurements from space with high spatial resolution. A first parametric investigation, based upon the initial set of mission requirements, and supported by dedicated models and detailed trade-off studies, took account of capabilities of most promising signal processing algorithms and calibration/validation constraints: it yielded a large conically scanned instrument deemed technologically risky. A risk analysis was then carried out to propose a less challenging instrument meeting most key mission requirements. The fixed line-of-sight concept with return signal accumulation appeared as most attractive. A second set of requirements agreed upon by scientific users was therefore issued, with relaxed constraints mainly on horizontal resolution, keeping roughly the same level of wind velocity measurement accuracy. A second instrument and subsystem trade-off was then performed to eventually produce an attractive instrument concept based upon a pair of small diameter telescopes each one associated to one scanning mirror rotating stepwise around the telescope axis, which drastically reduces the detection bandwidth. Following the main contract, studies of accommodation on the International Space Station have been performed, confirming the interest of such an instrument for wind measurements from space.
AEROSPATIALE, leading a European team, has just conducted a successful study, under ESA contract, to demonstrate the feasibility of a spaceborne Doppler wind lidar instrument meeting the scientific requirements of wind velocity measurements from space with high spatial resolution. A first parametric investigation, based upon the initial set of mission requirements, and supported by dedicated models and detailed trade-off studies, took account of capabilities of the most promising signal processing algorithms and calibration/validation constrains: it yielded a large conically scanned instrument deemed technologically risky. A risk analysis was then carried out to propose a less challenging instrument meeting most key mission requirements. The fixed line-of-sight concept with return signal accumulation appeared as most attractive. A second set of requirements agreed upon by scientific users was therefore issued, with relaxed constraints mainly on horizontal resolution, keeping roughly the same level of wind velocity measurement accuracy. A second instrument and subsystem trade- off was then performed to eventually produce an attractive instrument concept based upon a pair of small diameter telescopes each one associated to one scanning mirror rotating stepwise around the telescope axis, which drastically reduces the detection bandwidth. Following the main contract, studies of accommodation on the International Space Station have been performed, confirming the interest of such an instrument for wind measurements from space.
The European Space Agency program for Development of a CO2 Laser for Spaceborne Doppler Wind Lidar Applications addresses both performance and lifetime aspects. Lifetime issues are of particular importance due to the 109 pulse life requirement for a spaceborne laser operating continuously at 10 Hz for a period of three years. Particularly critical lifetime issues for an e-beam sustained laser have been identified as the electron transmitting metal foil separating the electron gun and the laser, and the gas life. Four areas of study have been undertaken to address the foil and gas lifetime issues: Parametric Study of Gaseous Catalysis to determine the range of operating conditions under which oxidation of CO by high energy electrons can be expected to offset dissociation of CO2, thus eliminating the need for solid catalyst. Extended Sealed Runs to demonstrate long life in a representative laser system of the actual size required. Several runs of 107 pulses, and one run of 6.5 X 107 pulses, have been performed. The Foil Thermal Profile has been monitored using a pyroelectric vidicon camera to determine the maximum temperature reached by different candidate foil materials under representative conditions. High Temperature Foil Fatigue tests of 109 pulses have been carried out to simulate the effect of the laser pressure pulse, by performing fatigue tests on foil materials at high temperature.
The transmitter laser is recognised to be one of the most critical technologies for space-based Doppler windlidar [1].
We present initial evaluation of the performance of an e-beam sustained device in the 1OJ, 10 Hz class. Lifetime issues
are addressed in a subsidiary paper. We describe the design of the device and the results of a number of characterisation studies:
1) General nonoptical tests of gas circulation and heat exchanger efficiency. 2) Performance optimisation to maximise multimode efficiency as a function of energy loading, main discharge
E/N and gas composition, all tests allowed for optimisation of cavity extraction. 3) Characterisation of the novel plasma anode electron gun with respect to beam uniformity, secondary electron
concentration, and current constancy. 4) Optical characterisation to examine operating wavelength, pulse shape, beam profile in the near and far-field,
output energy and electrical to optical conversion efficiency, and frequency behaviour during the pulse.
This paper presents an overview of activities carried out in support of both NASA and European Space Agency programs for the development of a laser for space-based wind measurement. For the NASA Laser Atmospheric Wind Sounder (LAWS) program, a Phase One Laser Transmitter Study was undertaken, leading to the recommendation of an e-beam sustained CO2 laser. For the European Space Agency (ESA) program for Development of a CO2 Laser for Spaceborne Doppler Wind Lidar, some of the most significant results obtained to date are: (1) Demonstration of sealed lifetests using an e-beam sustained test laser to 107 pulses using a gas phase catalysis technique, (2) Optimization of multimode laser head efficiency to 17% has been accomplished, with a corresponding 10% single transverse mode efficiency, (3) Demonstration of foil lifetimes consistently in excess of 109 pulses at higher temperature and pressure pulse levels than expected in the breadboard laser, (4) Design, procurement, assembly, and initial testing of a compact breadboard laser. As well as laser performance, particular attention has been paid to the sever vibration requirements, thermal and gas flow aspects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.