The production of high quality optical devices based on porous silicon relies on having precise control over the refractive
index and thickness of each porous silicon layer. Until now this has been achieved by pre-calibrating each growth
system and making sure that parameters such as wafer doping, electrolyte concentration and temperature are kept constant
with each fabrication. However low doped silicon required for IR based silicon photonics has significant non-uniformity
in the index and growth rate during formation of the porous silicon. The solution we have developed is based on realtime
in-situ monitoring of low-doped silicon during porous silicon growth. This process rapidly measures the optical
interference between the porous silicon film and the backside silicon surface. The optical light source comes from six
coarse-wavelength-division-multiplexed lasers, with rapid switching between wavelengths achieved using a
microelectromechanical switch. The system permits rapid measurement (<1 sec) of the reflection spectra from all lasers,
enabling real-time thickness and refractive index of each layer to be determined during growth. Our aim is to enable
growth of high quality multi-layer films such as those required for Bragg Reflectors and high-Q Fabry-Perot microcavities.
In this paper we briefly describe the instrument, the numerical models developed to gather the measurements,
and show preliminary results gathered from this instrument during growth. The results show a good agreement with
theoretical optical modelling, and also direct measurements of the porous silicon layers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.