Earth Observation (EO) systems are generating an ever-increasing amount of data to be handled on board yet with limited resources, which sometimes hinders a full exploitation of the information content. In this paper, we present a demonstrator of a super-resolved compressive imager operating in whiskbroom mode in the Visible-Near Infrared (VISNIR) and Medium Infrared (MIR) spectral ranges. The demonstrator, which is under development in the frame of the EU H2020 funded SURPRISE project, is based on the use of a Digital MicroMirror Device (DMD) as a core element of its architecture and it is inspired by a single-pixel camera in order to avoid the use of large focal plane arrays. The demonstrator has 10 channels in the VNIR and two channels in the MIR and it can reach a super-resolution factor from 4 x 4 to 32 x 32, that is the ratio between the number of pixels of the image reconstructed at the end of the process and the number of pixels of the detector. Besides, on the grounds of the results obtained by image reconstruction tests on simulated datasets by using Deep Learning based algorithms, data are expected to be natively compressed with a Compression Ratio up to 50%. The study is expected to provide valuable insight for the future development of a novel class of EO instruments with improved performances in terms of ground sampling distance, native compression and on-board processing capabilities. Additional presentation content can be accessed on the supplemental content page.
The EnVisS (Entire Visible Sky) instrument is one of the payloads of the European Space Agency Comet Interceptor mission. The aim of the mission is the study of a dynamically new comet, i.e. a comet that never travelled through the solar system, or an interstellar object, entering the inner solar system. As the mission three-spacecraft system passes through the comet coma, the EnVisS instrument maps the sky, as viewed from the interior of the comet tail, providing information on the dust properties and distribution. EnVisS is mounted on a spinning spacecraft and the full sky (i.e. 360°x180°) is entirely mapped thanks to a very wide field of view (180°x45°) optical design selected for the EnVisS camera. The paper presents the design of the EnVisS optical head. A fisheye optical layout has been selected because of the required wide field of view (180°x45°). This kind of layout has recently found several applications in Earth remote sensing (3MI instrument on MetOp SG) and in space exploration (SMEI instrument on Coriolis, MARCI on Mars reconnaissance orbiter). The EnVisS optical head provides a high resolved image to be coupled with a COTS detector featuring 2kx2k pixels with pitch 5.5µm. Chromatic aberration is corrected in the waveband 550-800nm, while the distortion has been controlled over the whole field of view to remain below 8% with respect to an Fθ mapping law. Since the camera will be switched on 24 hours before the comet closest encounter, the operative temperature will change during the approaching phase and crossing of the comet’s coma. In the paper, we discuss the solution adopted for reaching these challenging performances for a space-grade design, while at the same time respecting the demanding small allocated volume and mass for the optical and mechanical design. The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.
EnVisS (Entire Visible Sky) is a space camera aboard the Comet Interceptor ESA mission. This is the first F-class space mission, a new generation of fast ESA missions, and it is scheduled for launch in 2029. Comet Interceptor aims to study, by means of in situ observations, a dynamically new comet, or interstellar object, that enters the Solar System for the first time. Approaching the comet, three modules will detach: spacecraft A will provide remote sensing and communications, while spacecraft B1 and B2 will cross the coma and fly-by the nucleus. EnVisS is a fish-eye camera with a field of view (FOV) of 180° × 45°. It is mounted on B2, which is spin stabilized; the spin provides the scanning motion for the camera allowing imaging the whole sky (180° × 360°) including the comet. The EnVisS optical head is composed of ten lenses; the collected visible light passes through a three-strip filter assembly before reaching the detector. The central filter strip is a broadband filter, while the sides filter strips are linear polarizers, with the aim of studying the polarization state of the light reflected by both the comet coma and its core. The optical performance of EnVisS has been evaluated through ray tracing analyses. In this paper, the ghost study will be described and ghost images will be shown. This analysis, performed in the ZEMAX OpticStudio®, highlights which optical element causes the most intense ghost images and shows their distribution over the detector.
The need of high-resolution Earth Observation (EO) images for scientific and commercial exploitation has led to the generation of an increasing amount of data with a material impact on the resources needed to handle data on board of satellites. In this respect, Compressive Sensing (CS) can offer interesting features in terms of native compression, onboard processing and instrumental architecture. In CS instruments the data are acquired natively compressed by leveraging on the concept of sparsity, while on-board processing is offered at low computational cost by information extraction directly from CS data. In addition, instrument’s architecture can enjoy super-resolution capabilities that ensure a higher number of pixels in the reconstructed image with respect to that natively provided by the detector. In this paper, we present the working principle and main features of a CS demonstrator of a super-resolved instrument for EO applications with ten channels in the visible and two channels in the medium infrared. Besides the feature of merging in a single step the acquisition and compression phases of the image generation, its architecture allows to reach a superresolution factor of at least 4x4 in the images reconstructed at the end of process. The outcome of the research can open the way to the development of a novel class of EO instruments with improved Ground Sampling Distance (GSD) - with respect to that one provided natively by the number of sensing elements of the detector - and impact EO applications thanks to native compression, on-board processing capabilities and increased GSD.
This paper presents the results of a study aimed at investigating the potential of Compressive Sensing (CS) technologies for optical space instruments. Besides assessing the pros and cons for a wide set of proposed instrumental concepts for space applications, the study analyzed in further detail two CS-based instrument concepts, each targeting a specific application: an UV-VIS hyperspectral imager on orbiter for stellar spectro-photometry and a MIR camera for sky observation and real-time detection of Near Earth Objects (NEO). The proposed UV-VIS hyperspectral imager relies on a classical CS approach and addresses the CS reconstruction of the full image in order to implement slitless spectrophotometry of stars. The CS-based MIR camera for NEO detection instead explores a novel approach aiming at information extraction without a prior full reconstruction of the image. Besides outlining the optical design of the instruments, its key elements and a pros and cons analysis of the architecture, this paper presents the performance assessment of these instruments for typical application scenarios by means of simulated data. The results showed that, from the point of view of data reconstruction quality, a good performance can be achieved by the designed instruments in terms of compression ratio (CR) and image reconstruction. In terms of system budgets, the CS architecture offered only some marginal benefits with respect to their traditional counterparts, mainly due to the lack of a compression board. Most advantages are instead provided in terms of downlink requirements and memory buffer.
In order to ensure continuity and further enhancement of the European operational meteorological observations in the timeframe of 2020 to 2040, the MetOp-SG programme has been initiated by ESA in collaboration with EUMETSAT. ESA develops the prototype MetOp-SG satellites (including associated instruments) and procures, on behalf of EUMETSAT, the recurrent satellites (and associated instruments). EUMETSAT is responsible for the overall mission, funds the recurrent satellites, develops the ground segment, procures the launch and LEOP services and performs the satellites operations. The corresponding EUMETSAT Programme is termed the EUMETSAT Polar System – Second Generation or EPS-SG.
The FLuorescence Imaging Spectrometer (FLORIS) is the payload of the FLuorescence Explorer Mission (FLEX) of the
European Space Agency. The mission objective is to perform quantitative measurements of the solar induced vegetation
fluorescence to monitor photosynthetic activity. FLORIS works in a push-broom configuration and it is designed to
acquire data in the 500–780 nm spectral range, with a sampling of 0.1 nm in the oxygen bands (759–769 nm and 686-
697 nm) and 0.5–2.0 nm in the red edge, chlorophyll absorption and Photochemical Reflectance Index bands. FLEX will
fly in formation with Sentinel-3 to benefit of the measurements made by the Sentinel-3 instruments OLCI and SLSTR,
particularly for cloud screening, proper characterization of the atmospheric state and determination of the surface
temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with
reflective concave gratings both for the High Resolution (HR) and Low Resolution (LR) spectrometers. In the frame of
the instrument pre-development Leonardo Company (I) has built and tested an elegant breadboard of the instrument
consisting of the telescope and the HR spectrometer. The development of the LR spectrometer is in charge of OHB
System AG (D) and is currently in the manufacturing phase. The main objectives of the activity are: anticipate the
development of the instrument and provide early risk retirement of critical components, evaluate the system
performances such as imaging quality parameters, straylight, ghost, polarization sensitivity and environmental
influences, verify the adequacy of critical tests such as spectral characterization and straylight, define and optimize
instrument alignment procedures. Following a brief overview of the FLEX mission, the paper will cover the design and
the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned
for the flight unit.
The Multi-Viewing, Multi-Channel, Multi-Polarisation Imager (3MI) is an imaging radiometer for the ESA/Eumetsat MeteOp-SG programme. Based on the heritage of the POLDER/PARASOL instrument, 3MI is designed to collect global observations of the top-of-atmosphere polarised bi-directional reflectance distribution function in 12 spectral bands, by observing the same target from multiple views using a pushbroom scanning concept.
The demanding challenge of the 3MI optical design is represented by the polarisation and image irradiance fall-off (throughput uniformity) requirements. In a generic optical system, the image irradiance fall-off is a function of: target radiance distribution and polarisation, entrance pupil size and optical transmittance variations across the field of view (FOV), distortion and vignetting. In most applications these aspects can be considered as independent; however, when high image irradiance uniformity is required, they have to be considered as linked together. This is particularly true in case of a wide FOV polarimeter as 3MI is.
In order to properly account for these aspects, an irradiance fall-off analytical model has been developed in the frame of 3MI Optics Pre-Development (OPD), whose aim is to mitigate any technological risks associated with the 3MI instrument development. It is shown how it is possible to control the image irradiance distribution acting on optical design parameters (e.g. distortion and entrance pupil size variation with FOV). Moreover, the impact of polarisation performances on irradiance fall-off is discussed.
The Multi-Viewing, Multi-Channel, Multi-Polarisation Imager (3MI) is an imaging radiometer for the ESA/Eumetsat MetOp-SG programme. Based on the heritage of POLDER/PARASOL, 3MI will collect global observations of the top-of-atmosphere polarised bi-directional reflectance distribution function in 12 spectral bands, by observing the same target from multiple views using a push-broom scanning concept. In order to mitigate any technological risks associated with the 3MI instrument development, an Elegant Breadboard of representative form, function and performance to the 3MI VNIR lens was foreseen in the frame of the Optics Pre- Development (OPD) activity. The optical design and the performance results of the OPD VNIR lens are presented, from the top level requirements flow-down to the optical design solution and concept adopted. The large FOV and image irradiance uniformity, the extended VNIR spectral range, combined with the demanding polarisation and stray-light requirements are the main design drivers. The design concept is based on a Galilean telescope coupled to a focusing group. The aperture stop, placed in between, is located in such a way that the system is telecentric in image space. The system exhibits a fine control of the entrance pupil size as a function of the FOV, low distortion and correction of lateral chromatic aberration. Polarisation related performances are achieved by low polarisation sensitivity and low retardance anti-reflection coatings, as well as by a proper selection of glass material properties.
The Centro Nazionale di Meteorologia e Climatologia Aeronautica recently hosted a fellowship sponsored by Galileo
Avionica, with the intent to study and perform a simulation of Meteosat Third Generation - Lightning Imager (MTG-LI)
sensor behavior through Tropical Rainfall Measuring Mission - Lightning Imaging Sensor data (TRMM-LIS). For the
next generation of earth observation geostationary satellite, major operating agencies are planning to insert an optical
imaging mission, that continuously observes lightning pulses in the atmosphere; EUMETSAT has decided in recent
years that one of the three candidate mission to be flown on MTG is LI, a Lightning Imager. MTG-LI mission has no
Meteosat Second Generation heritage, but users need to evaluate the possible real time data output of the instrument to
agree in inserting it on MTG payload. Authors took the expected LI design from MTG Mission Requirement Document,
and reprocess real lightning dataset, acquired from space by TRMM-LIS instrument, to produce a simulated MTG-LI
lightning dataset. The simulation is performed in several run, varying Minimum Detectable Energy, taking into account
processing steps from event detection to final lightning information. A definition of the specific meteorological
requirements is given from the potential use in meteorology of lightning final information for convection estimation and
numerical cloud modeling. Study results show the range of instrument requirements relaxation which lead to minimal
reduction in the final lightning information.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.