Sensors Unlimited Inc. (SUI), a Collins Aerospace Company, has developed a large-area, high-speed, short-wave infrared (SWIR) focal plane array (FPA) to meet the field-of-view (FOV) and bandwidth requirements of LiDAR applications. Modifications to SUI’s standard InGaAs photodiode array (PDA), include junction shape, dielectric thickness, and contact metallization. These changes allow for a reduction in the effective capacitance seen by the hybridized FPA’s readout integrated circuit (ROIC) while preserving the epitaxial structure that ensures the company’s industry-leading dark current. Compared to SUI’s standard device, significant capacitance reductions have been demonstrated. Enhancements of laser pulse detection performance arising from the capacitance improvement, and suitability of the resulting device for implementation in LiDAR systems, will be discussed.
Sensors Unlimited Inc. (SUI), a Collins Aerospace company, has developed a short wave infrared (SWIR) photodetector device structure using isolated mesa pixels to improve the detector modulation transfer function (MTF), an important parameter in determining the overall image quality of a camera system. A combination of device fabrication and simulation has been used to evaluate the design and manufacturability of various mesa morphologies. Because mesa formation entails both the removal of some portion of the active region of the photodetector and the introduction of non- planar surfaces, any MTF improvement must be balanced against a loss of quantum efficiency (QE) and potentially higher dark current. Focal plane arrays (FPAs) based on the optimal mesa morphology have been fabricated and compared for MTF and QE performance at the camera level to FPAs built using SUI’s standard pixel structure. The mesa structure described herein is implemented on the front side of the photodetector and could also be implemented across all of SUI’s backside-illuminated (i.e., VIS/SWIR, NIR/SWIR, SWIR) structures for applications where a premium is placed on MTF performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.