Roll-to-roll UV nanoimprint lithography (R2R-UV-NIL) gains increasing industrial interest for large-area nano- and microstructuring of flexible substrates. It combines the possibility of multi length scale and 2.5D patterning of a functional resist with a square meter per minute productivity.
The fabrication of micro- and nanooptic elements and systems nowadays can be named a classical application of batch NIL. However, large-area application fields like display, photovoltaics or solar cell markets ask for upscaling possibilities with respect to active area and throughput. The combination of direct laser lithography, step+repeat imprinting for shim fabrication and R2R reproduction even offers a much higher diversity of application fields. Free form lenses and mirrors, waveguiding units or complex light manipulating systems add new possibilities for customized photonic systems, security features or large area high-end decoration.
Within this talk we will present the possibilities of combining greyscale laser lithography and roller-based imprinting with functionalized high-k imprint resins and see how to produce meters-per-minute 2.5D optical features on flexible substrates.
Roll-to-Roll-UV-nanoimprint lithography (R2R-UV-NIL) enables high resolution large area patterning of flexible substrates and is therefore of increasing industrial interest. We have set up a custom-made R2R-UV-NIL pilot machine which is able to convert 10 inch wide web with velocities of up to 30 m/min. In addition, we have developed self-replicable UV-curable resins with tunable surface energy and Young’s modulus for UV-imprint material as well as for polymer working stamp/shim manufacturing. Now we have designed test patterns for the evaluation of the impact of structure shape, critical dimension, pitch, depth, side wall angle and orientation relative to the web movement onto the imprint fidelity and working shim life time. We have used female (recessed structures) silicon masters of that design with critical dimensions between CD = 200 nm and 1600 nm, and structure depths of d = 500 nm and 1000 nm - all with vertical as well as inclined side walls. These entire master patterns have been transferred onto single male (protruding structures) R2R polymer working shims. The polymer working shims have been used for R2R-UV-NIL runs of several hundred meters and the imprint fidelity and process stability of the various test patterns have been compared. This study is intended as a first step towards establishing of design rules and developing of nanoimprint proximity correction strategies for industrial R2R-UV-NIL processes using polymer working shims.
We report on our development strategy of photo-curable resists for nanoimprint lithography (NIL) based on modularity. Starting with a basic formulation, we address two topics: the integration of fluorinated additives and the enhancement of the dry etching stability. We prove both concepts by the introduction of two different resists derived from the same basic formulation. The viscosity of the novel resist materials was optimized for inkjet dispensing at room temperature (RT). The novel resist materials can be applied either in NIL batch processes or in high-throughput roller processes. Batch-wise imprints were performed on various substrates such as Si or plastics, demonstrating the distinctive application versatility of the novel materials. Dry etching of spin-coated thin films on Si wafers was performed, demonstrating an etch stability versus Si of 3.5:1 by using the resist formulation with improved etching stability. Roll-to-roll NIL at high throughput on large areas was performed with web speeds of up to 30 m min−1 with different stamp materials. We conclude that all resists reported herein can be deposited via inkjet dispensing at RT, are suitable for continuous high-throughput imprinting on flexible substrates, and are applicable in step-wise NIL processes with good etch resistance in dry etch processes.
The high throughput and large area nanostructuring of flexible substrates by continuous roller processes has great potential for future custom applications like wire grid polarizers, antireflection films, or super-hydrophobic surfaces. For each application different material characteristics have to be considered, e.g. refractive index, hydrophobicity, or dry etch stability. Herein, we show experimental results of nanoimprint lithography resist developments focused on inkjetable and photo-curable resists suitable for high throughput production, especially roll-to-roll NIL. The inkjet deposition of the novel materials is demonstrated by the use of different state-of-the-art inkjet printheads at room temperature. A plate-to-plate process on silicon substrates was successfully implemented on a NPS300 nano patterning stepper with previously inkjet dispensed NIL resist. Furthermore, we demonstrate a throughput of 30 m min-1 in a roller NIL process on PET. Dry etching of unstructured thin films on Si wafers was performed, and it was demonstrated that the etch stability in Si is tunable to a value of 3.5:1 by a concise selection of the resist components. The surface roughness of the etched films was measured to be < 2 nm, after etching of around 100 nm of the resist films what is an essential factor for a low line edge roughness. All resists reported herein can be deposited via inkjet dispensing at room temperature, are suitable for continuous high throughput imprinting on flexible substrates, and are applicable in step-wise NIL processes with good etch resistance in dry etch processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.