The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission to monitor and characterize the Earth’s environment. The EnMAP payload, the Hyper Spectral Imager (HSI) features an on-board calibration assembly (OBCA) which is designated to provide the optical radiation to monitor the instrument radiometric and spectral stability during the mission lifetime. The assembly comprises two integrating spheres in twin configuration equipped with several different optical radiation sources. The large sphere made of white diffuse reflecting material is dedicated for radiometric stability measurements, while the small sphere, made of rare-earth doped diffuse reflecting material, is dedicated for spectral stability checks. The OBCA utilizes two types of optical radiation sources: tungsten halogen lamps and white light LEDs.
Here we report on the spectral and radiometric calibration of the OBCA qualification and flight model in the Reduced Background Calibration Facility 2 (RBCF2) of Physikalisch-Technische Bundesanstalt (PTB) [1].
The demanding requirements were to perform a calibration in air and in vacuum with an uncertainty of less than 2% with a spectral resolution of 0.1 nm over a wavelength range from 400 nm to 2500 nm not exceeding an operating time of 40 h for the halogen lamps and 100 h for the LEDs. Furthermore, a precise mapping of the OBCA exit aperture of size 2 mm by 24 mm with 1 mm sampling diameter had to be performed. For that purposes PTB developed a calibration procedure based on spectral comparisons of the OBCA with respect to dedicated vacuum radiance standards with an FTS in three wavelength ranges which were covered by three beamsplitter detector combinations. A dedicated imaging optics was designed transforming the F:3 opening of the OBCA to the F:8 opening ratio of the FTS and providing also the required small sampling area.
Before and after their application, the dedicated vacuum qualified radiance standards were calibrated against the primary standards of PTB and corrected for the transition from air to vacuum and back to account for possible drifts of the sources. By this procedure a spectral and radiometric calibration of the OBCA traceable to the SI was achieved with the aspired uncertainties.
[1] C. Monte et al, The new Reduced Background Calibration Facility 2 for Detectors, Cameras and Sources at the Physikalisch-Technische Bundesanstalt, Sensors, Systems, and Next-Generation Satellites SPIE 2018
The CRIRES+ project attempts to upgrade the CRIRES instrument into a cross dispersed Echelle spectrograph with a simultaneous recording of 8-10 diffraction orders. In order to transform the CRIRES spectrograph into a cross-dispersing instrument, a set of six reflection gratings, each one optimized for one of the wavelength bands CRIRES+ will operate in (YJHKLM), will be used as cross dispersion elements in CRIRES+. Due to the upgrade nature of the project, the choice of gratings depends on the fixed geometry of the instrument. Thus, custom made gratings would be required to achieve the ambitious design goals. Custom made gratings have the disadvantage, though, that they come at an extraordinary price and with lead times of more than 12 months. To mitigate this, a set of off-the-shelf gratings was obtained which had grating parameters very close to the ones being identified as optimal. To ensure that the rigorous specifications for CRIRES+ will be fulfilled, the CRIRES+ team started a collaboration with the Physikalisch-Technische Bundesanstalt Berlin (PTB) to characterize gratings underconditions similar to the operating conditions in CRIRES+ (angle of incidence, wavelength range).
The respective test setup was designed in collaboration between PTB and the CRIRES+ consortium. The PTB provided optical radiation sources and calibrated detectors for each wavelength range. With this setup, it is possible to measure the absolute efficiency of the gratings both wavelength dependent and polarization state dependent in a wavelength range from 0.9 μm to 6 μm.
Solid homogeneous turbid phantoms can be employed to mimic the attenuation and angular distribution of light
emerging from tissue, e.g., to assess the responsivity of the detection system of diffuse optics instrumentation and to
support standardized performance tests of functional near-infrared spectroscopy devices. We present three methods to
quantify the wavelength-dependent diffuse transmittance, relying on (1) measurement of radiance exiting the phantom by
a detector far from the exit aperture, (2) simple recording of radiance by a power meter close to the exit aperture and
correction for the finite distance between phantom surface and detector, (3) determination of the reduced scattering and
absorption coefficients by time-resolved diffuse transmittance measurements and forward calculation of the time-integrated
diffuse transmittance based on the diffusion model. The implications of the different approximations related to
these approaches are discussed. The various methods were applied to characterize solid slab phantoms, and the results
were compared. Specifically, for an epoxy-resin based phantom having a thickness of 2 cm, a reduced scattering
coefficient of about 0.5/mm and an absorption coefficient of about 0.01/mm, the diffuse transmittance values obtained by
the three different methods were found to agree within about 10%.
Performance assessment of instruments devised for clinical applications is of key importance for validation and quality assurance. Two new protocols were developed and applied to facilitate the design and optimization of instruments for time-domain optical brain imaging within the European project nEUROPt. Here, we present the “Basic Instrumental Performance” protocol for direct measurement of relevant characteristics. Two tests are discussed in detail. First, the responsivity of the detection system is a measure of the overall efficiency to detect light emerging from tissue. For the related test, dedicated solid slab phantoms were developed and quantitatively spectrally characterized to provide sources of known radiance with nearly Lambertian angular characteristics. The responsivity of four time-domain optical brain imagers was found to be of the order of 0.1 m2 sr. The relevance of the responsivity measure is demonstrated by simulations of diffuse reflectance as a function of source-detector separation and optical properties. Second, the temporal instrument response function (IRF) is a critically important factor in determining the performance of time-domain systems. Measurements of the IRF for various instruments were combined with simulations to illustrate the impact of the width and shape of the IRF on contrast for a deep absorption change mimicking brain activation.
To facilitate the design and optimization of instruments for time-domain optical brain imaging within the European
project "nEUROPt", the performance of various instruments is assessed and compared. This type of instruments relies on
picosecond lasers with high repetition rates, fast detectors and time-correlated single photon counting. The first step of
the assessment included a number of basic tests that are related to parameters of the source, to the differential
nonlinearity of the timing electronics and to the temporal instrument response function (IRF). An additional test has been
devised to measure the responsivity of the detection system, i.e. the overall efficiency to collect and detect light
emerging from tissue. Dedicated solid slab phantoms have been developed and quantitatively spectrally characterized to
provide sources of known radiance with nearly Lambertian angular characteristics. The wavelength-dependent
transmittance factor of these phantoms was of the order of 1020/(W s m2sr). Measurements of the responsivity of the
detection systems of three time-domain optical brain imagers tested yielded similar values of the order of 0.1 mm2sr.
The Physikalisch-Technische Bundesanstalt (PTB) has developed dedicated instrumentations and methods for the
traceable calibration of space borne instruments in terms of the three fundamental radiometric units, i.e. spectral radiance
(radiation temperature), spectral radiant intensity and spectral photon flux. The traceable calibration under conditions
similar to the space environment is achieved by use of two major radiometric calibration facilities of PTB, the Spectral
Radiance Comparator Facility (SRCF) and the Reduced Background Calibration Facility (RBCF) which are part of the
Primary Temperature Radiator Facility of PTB and cover the wavelength range from the UV to the FIR (THz range). The
improved detector instrumentations of the SRCF and RBCF, detailed calibration schemes and results of calibrations for
space missions are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.