The present paper considers a ring confocal resonator in which the fulfillment of the confocal condition and the spectrum degeneracy are achieved through the use of a concave toroidal reflective surface with specified values of curvature radii in two main meridional sections. Such resonators can be used, in particular, as sensors in resonator micro-optic gyroscopes resonant optical gyroscope. This work is devoted to a review of technologies suitable for manufacturing of ring confocal resonators, and to an estimation of the deviations of the geometric parameters of confocal resonators acceptable during this manufacturing. To achieve this, the Fox and Li method is used, which was earlier modernized to calculate ring resonators with astigmatic reflecting elements.
Holographic wavefront sensors are the convenient tool for the fast, cheap and computation lacking wavefront analysis. The use of holographic filters-correlators makes it possible to decompose the wavefront along the basis of Zernike polynomials or to represent it as a set of piston segments. The paper considers possible application of such a technique for beam decomposition along other basis like Hermite-Gauss, Laguerre-Gauss and so on sets.
Asymmetrization of fringe profile (the so-called “blazing) of thin phase holograms provides the opportunity to increase their diffraction efficiency to nearly 100%. One of popular applications of thin holograms is generation of the optical vortices. The paper considers advantages and special features of using of digital blazing in such fork-like holograms.
In this paper, the determination of the topological charge of the vortex beams by means of shearing interferometry was achieved, for both common and non-common path shearing interferometers, using simple yet effective optical elements. The recording and analysis of interference patterns from different setups was accomplished using: cyclic, rotational and reversal shearing interferometers. The use of cyclic and rotational shearing interferometers resulted in interference patterns with two oppositely oriented forks for both setups. However, with the reversal shearing interferometer, a single forked pattern was obtained and a mathematical approximation was deduced.
This article considers the use of holographic interferometer to overwrite the holograms for distortion correction. Each optical system contains some deviations of the beam path, called aberrations of the optical system. They are considered in the resulting interference figure as a distortion of the bands. While increasing the sensitivity of the interference pattern, new aberrations caused by re-registration of the installation in addition to the aberrations already presented on the interferogram caused by the initial record, also multiplied by N times, are introduced N times. In this experiment we decided to use a modified setup with spatially combined interferograms with use of reflective SLM (spatial light modulator) LETO and digital image handling of the interferograms recorded by CCD or CMOS camera.
The article considers the use of holographic interferometer to overwrite the holograms for distortion correction. Each optical system contains some deviations of the beam path, called aberrations of the optical system. They are considered in the resulting interference figure as a distortion of the bands. While increasing the sensitivity of the interference pattern, new aberrations caused by re-registration of the installation in addition to the aberrations already presented on the interferogram caused by the initial record, also multiplied by N times, are introduced N times. In this experiment we decided to use a modified setup with spatially combined interferograms with use of reflective SLM (spatial light modulator) LETO and digital image handling of the interferograms recorded by CCD or CMOS camera.
The method of amplification of hologram was applied to the so-called Rozhdestvenskiy hooks, that were obtained in the Rozhdestvenskiy interferometer (Michelson interferometer, combined with a grating spectrograph). In such a device the absorption lines reveal themselves as specific “hooks”, whose curvature provides the information about the atomic oscillator force. The holographic amplification “smoothes” the hooks and thus makes their analysis much simpler.
The method of amplification of hologram was applied to the so-called Rozhdestvenskiy hooks, that were obtained in the Rozhdestvenskiy interferometer (Michelson interferometer, combined with a grating spectrograph). In such a device the absorption lines reveal themselves as specific “hooks”, whose curvature provides the information about the atomic oscillator force. The holographic amplification “smoothes” the hooks and thus makes their analysis much simpler.
The paper considers the use of holographic interferometer for hologram recording of the wide spectrum from the comb – generator of the femtosecond laser was applied for illuminating of Michelson interferometer with atomic vapor. The behavior of spectral interference fringes on the exit slit of spectrograph reflects the behavior of nonlinear refractive index. The method of holographic interferometry with increasing sensitivity using phase modulator was applied for digital hologram processing.
The paper considers the use of holographic interferometer for hologram re-recording with correction of distortions. Each
optical system contains some beam path deviations, called aberrations of the optical system. They are seen in the
resulting interference pattern as a distortion of fringes. While increasing the sensitivity of the interference pattern by N
times at the same time we introduce new aberrations, caused by re-recording setup in addition to aberrations that are
already presented on the interferogram, caused by initial recording, also multiplied by N times. In this experiment we
decided to use a modified setup with spatially combined interferograms with use of matrix spatial light modulator and
digital image processing of the interferograms recorded by CCD or CMOS camera.
We present the results of experimental investigation of measuring the wavefront distortions, accumulated during propagation of the bi-chromatic (0.53 and 1.06 μm) radiation propagation along the in-door atmospheric path by the pair of Shack-Hartmann wavefront sensors. The wavefront distortions for two wavelengths are compared, and the correlation between these distortions is revealed.
The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.