Cutting edges are of great importance in industry and especially in mechanical engineering. However, like other components, they wear out over time. The contour and in particular the cutting edge itself can be damaged over time or by other occurrences and be defective. If the traces of use or defects are small, they can be corrected by reworking. This means that the cutting edge can still be used by post-processing. To achieve this, it is necessary to measure the cutting edge. Subsequently, the error must be evaluated. This error should indicate whether and how far the cutting edge must be reworked. In order to carry out such an evaluation, ideal references of the cutting edge are necessary. If an ideal geometry of the cutting edge is available as a computer-aided design model, the evaluation is trivial. However, this only exists in very rare cases. Often the reference geometry must be formed on the basis of one measurement. This paper presents a possibility of reconstructing cutting edges and therefore a rating of this cutting edge. The reconstruction is based on neuronal networks, more precisely by convolutional neuronal networks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.