Ultraviolet photoacoustic microscopy (UV-PAM) has emerged as a promising medical imaging technique for alternative histopathology, relying on the inherent optical absorption of DNA/RNA. However, traditional UV-PAM faces resolution challenges compared to clinical histological methods, limiting the observation of cellular structures. This limitation stems from the constraints of conventional reflection-mode UV-PAM systems, utilizing opto-ultrasound beam combiners or ring-shaped ultrasound transducers. These components impose constraints on numerical apertures (NA), thereby limiting spatial resolution. On the flip side, transmission-mode UV-PAM encounters difficulties in imaging thick specimens due to signal attenuation. In this study, we introduce an innovative solution – the development of an ultraviolet-transparent ultrasound transducer (UV-TUT) – overcoming these limitations and enabling high-resolution UV-PAM system. The UV-TUT significantly enhances both NA and lateral resolution, outperforming previous reflection-mode UV-PAM systems. With an impressive light transmission efficiency in the UV region and sensitivity four times greater than traditional ring-shaped ultrasound transducers, the UV-TUT lays the foundation for improved imaging capabilities. Leveraging the capabilities of the UV-TUT, we exploited a UV-PAM system, showcasing superior performance for imaging mouse brain tissue sections compared to conventional opto-ultrasound beam combiner-based UV-PAM. Furthermore, our application of photoacoustic histopathology on uterine cancer tissue sections demonstrated image quality comparable to microscopy images, providing valuable insights for accurate histopathological analysis. This work signifies a significant advancement in UV-PAM system, holding the promise to enhance the clinical utility of alternative histopathology with unprecedented resolution and imaging capabilities.
In this study, we introduce a measurement system based on DS-PAM (dichroism-sensitive photoacoustic microscopy) for assessing quench cracks. We evaluated a quench crack sample with dimensions of 300 μm in width and 150 μm in depth. Our observations revealed the presence of dichroism specifically at the edges of the crack.
Corticosteroids are commonly used medications for dermatological diseases. The main mechanisms of corticosteroids are vasoconstriction and anti-inflammatory. In medical field, its effectiveness is determined based on the degree of skin whitening caused by vasoconstriction. In this study, we first quantitatively evaluate the vasoconstriction induced by corticosteroids using photoacoustic microscopy (PAM). We longitudinally monitor vascular density and observe vasoconstriction by corticosteroids. Further, the changes in vascular density are quantified in each skin layer. From these results, we believe that PAM could potentially be a useful evaluation tool to predict the effectiveness of the corticosteroids in dermatology.
SignificanceCorticosteroids—commonly prescribed medications for skin diseases—inhibit the secretion of vasodilators, such as prostaglandin, thereby exerting anti-inflammatory action by constricting capillaries in the dermis. The effectiveness of corticosteroids is determined by the degree of vasoconstriction followed by skin whitening, namely, the blanching effect. However, the current method of observing the blanching effect indirectly evaluates the effects of corticosteroids.AimIn this study, we employed optical-resolution photoacoustic (PA) microscopy (OR-PAM) to directly visualize the blood vessels and quantitatively evaluate vasoconstriction.ApproachUsing OR-PAM, the vascular density in mice skin was monitored for 60 min after performing each experimental procedure for four groups, and the vasoconstriction was quantified. Volumetric PA data were segmented into the papillary dermis, reticular dermis, and hypodermis based on the vascular characteristics obtained through OR-PAM. The vasoconstrictive effect of each skin layer was quantified according to the dermatological treatment method.ResultsIn the case of corticosteroid topical application, vasoconstriction was observed in the papillary (56.4 ± 10.9 % ) and reticular (45.1 ± 4.71 % ) dermis. For corticosteroid subcutaneous injection, constriction was observed solely in the reticular (49.5 ± 9.35 % ) dermis. In contrast, no vasoconstrictions were observed with nonsteroidal topical application.ConclusionsOur results indicate that OR-PAM can quantitatively monitor the vasoconstriction induced by corticosteroids, thereby validating OR-PAMs potential as a practical evaluation tool for predicting the effectiveness of corticosteroids in dermatology.
Multifocal multiphoton microscopy (MMM) by forming multifocal created with a lenslet array enables high-speed imaging than single-focal multiphoton microscopy. However, most multifocal multiphoton microscopy has a problem of degrading image quality compared to single-focal microscopes. In order to solve this problem, it is necessary to equalize the intensity of the multifocal incident light. The fluorescence signal emitted from the fluorescence material is determined by the intensity of the incident light, but compared to the single-focal multiphoton microscope, the incident light passing through the lenslet array not only causes problems in acquiring fluorescence images but also limits the field of view (FOV). This problem was overcome by using a specially designed beam shaper to equalize the multifocal incident light intensity. Another problem with MMM is that typical biopsy samples are opaque, so light scattering occurs when light is irradiated onto the sample. This is a cause of the noise that degrades image quality by generating crosstalk in which fluorescence signals emitted from each focus deviate from the focal plane and interfere with each other. For the minimization of crosstalk, we set up the algorithm technology to correct the sensitivity non-uniformity between channels of multi-channel photomultiplier tubes (PMT). And to minimize crosstalk between PMT circuits, an independent short-channel photon discriminator was designed to expand the number of focal points of the MMM system. Among the problems of MMM, two techniques were introduced, and it was confirmed that the noise of the fluorescence image was reduced. ¬
A coherent averaging method was applied to the speckle variance algorithm with a akinetic swept-source OCT system and compared with the case of magnitude averaging to find that the contrast of the OCT angiography image increased.
Significance: Collagen is a basic component of many tissues such as tendons, muscles, and skin, and its imaging helps diagnose and monitor treatments in a variety of fields, including orthopedics. However, due to the overlapping peaks of the absorption spectrum with water in the short-wave infrared region (SWIR), it is difficult to select an optimal wavelength and obtain the photoacoustic (PA) image for collagen-based tissues. Therefore, an additional approach to selecting the proper wavelength is needed.
Aim: The aim of this study is to derive an effective PA absorption spectrum of collagen to select the optimal wavelength for high-sensitive PA imaging (PAI).
Approach: We measure the absorption spectrum by acquiring the PA signal from various collagen-based samples. To derive an effective PA absorption spectrum in the SWIR band, the following two parameters should be considered: (1) the laser excitation for generating the PA signal and (2) the absorption spectrum for water in the SWIR band. This molecular intrinsic property suggests the optimal wavelength for high-sensitive PAI of collagen-based samples.
Results: PA absorption spectral peaks of collagen were found at wavelengths of 1200, 1550, and 1700 nm. Thereby, the PA signal increased by up to five times compared with the wavelength commonly used in collagen PAI. We applied a pulsed fiber laser with a center wavelength of 1560 nm, and the three-dimensional PA image of a collagen patch was obtained.
Conclusions: The effective PA absorption spectrum contributes to the improvement of the PA image sensitivity by presenting the optimal wavelength of the target samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.