Osteoporosis is a common age-related disease characterized by reduced bone mineral density (BMD), micro-structural deterioration, and enhanced fracture-risk. Although, BMD is clinically used to define osteoporosis, there are compelling evidences that bone micro-structural properties are strong determinants of bone strength and fracture-risk. Reliable measures of effective trabecular bone (Tb) micro-structural features are of paramount clinical significance. Tb consists of transverse and longitudinal micro-structures, and there is a hypothesis that transverse trabeculae improve bone strength by arresting buckling of longitudinal trabeculae. In this paper, we present an emerging clinical CT-based new method for characterizing transverse and longitudinal trabeculae, validate the method, and examine its application in human studies. Specifically, we examine repeat CT scan reproducibility, and evaluate the relationships of these measures with gender and body size using human CT data from the Iowa Bone Development Study (IBDS) (n = 99; 49 female). Based on a cadaveric ankle study (n = 12), both transverse and longitudinal Tb measures are found reproducible (ICC < 0.94). It was observed in the IBDS human data that males have significantly higher trabecular bone measures than females for both inner (p < 0.05) and outer (p < 0.01) regions of interest (ROIs). For weight, Spearman correlations ranged 0.43-0.48 for inner ROI measures and 0.50-0.52 for outer ROI measures for females versus 0.30-0.34 and 0.23-0.25 for males. Correlation with height was lower (0.36-0.39), but still mostly significant for females. No association of trabecular measures with height was found for males.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.