We directly transfer optical information around arbitrarily-shaped, fully-opaque occlusions that partially or entirely block the line-of-sight between the transmitter and receiver apertures. An electronic neural network (encoder) produces an encoded phase representation of the optical information to be transmitted. Despite being obstructed by the opaque occlusion, this phase-encoded wave is decoded by a diffractive optical network at the receiver. We experimentally validated our framework in the terahertz spectrum by communicating images around different opaque occlusions using a 3D-printed diffractive decoder. This scheme can operate at any wavelength and be adopted for various applications in emerging free-space communication systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.