Bell tests serve as a fundamental tool in both quantum technologies and quantum foundations investigation. The traditional Bell test framework involves the use of projective measurements, which, because of the wavefunction collapse and the Heisenberg uncertainty principle, do not allow for the full estimation of the Bell parameter from each entangled pair. In this work, we propose a novel weak-measurement-based scheme enabling the complete estimation of the entire Bell parameter from each entangled pair. Moreover, this approach prevents the collapse of the quantum state wavefunction, thereby preserving the entanglement within it. Our results, showing a 6 standard deviations violation of the Bell inequality tested, are obtained while leaving the entanglement within the photon pair almost unaltered after the weak measurement scheme (as demonstrated by our quantum tomographic reconstructions), allowing to exploit it for further foundational or practical purposes.
Despite being very influential on both foundations and applications of quantum mechanics, weak values are still somewhat controversial. Although there are some indications that weak values are physical properties of a single quantum system, the common way weak values are presented is statistical: it is commonly believed that for measuring weak values one has to perform many weak measurements over a large ensemble of pre- and postselected particles. Other debates surround the anomalous nature of weak value and even their quantumness. To address these issues, we present some preliminary data showing that anomalous weak values can be measured using just a single detection, i.e. with no statistics. In our experiment, a single click of a detector indicates the weak value as a single photon property, which moreover lies well beyond the range of eigenvelues of the measured operator. Importantly, the uncertainty with which the weak values is measured is smaller than the difference between the weak value and the closet eigenvalue. This is the first experimental realization of robust weak measurements.
Weak value measurements have been a real breakthrough in the quantum measurement framework. In particular, quantum measurements may take advantage by anomalous weak values, i.e. values out of the eigenvalues spectrum of the measured observable, both for implementing new measurement techniques and studying Quantum Mechanics foundations. In this report we show three experiments with single photons presenting anomalous weak values: the first one tests the incompatibility between quantum mechanics and noncontextual hidden variables theories, the second one is the first realization of a sequential weak value evaluation of two incompatible observables on the same photon, and the last one shows how sequential weak values can be used to test Leggett-Garg inequalities extended to multiple-measurements scenarios.
In quantum mechanics, the eigenvalues and their corresponding probabilities specify the expectation value of a physical observable, which is known to be a statistical property related to large ensembles of particles. In contrast to this paradigm, we demonstrate a unique method allowing to extract the expectation value of a single particle, namely, the polarisation of a single protected photon, with a single experiment. This is the first realisation of quantum protective measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.