We report on green-emitting In0.18Ga0.82N/GaN multi-quantum well (MQW) structures over a variety of metalorganic chemical vapor deposition (MOCVD) growth conditions to examine the morphology, optical quality, and micron-scale emission properties. The MOCVD growth parameter space was analyzed utilizing two orthogonal metrics which allows comparing and optimizing growth conditions over a wide range of process parameters: effective gas speed, S*, and effective V/III ratio, V/III*. Optimized growth conditions with high V/III, low gas speed, and slow growth rates resulted in improved crystal quality, PL emission efficiency, and micron-scale wavelength uniformity. One of the main challenges in green MQWs with high Indium content is the formation of Indium inclusion type defects due to the large lattice mismatch combined with the miscibility gap between GaN and InN. An effective way of eliminating Indium inclusions was demonstrated by introducing a small fraction of H2 (2.7%) in the gas composition during the growth of high temperature GaN quantum barriers. In addition, the positive effects of employing an InGaN/GaN superlattice (SL) underlayer to crystal quality and micron-scale emission uniformity was demonstrated, which is of special interest for applications such as micro-LEDs.
KEYWORDS: Near field scanning optical microscopy, Antennas, Sensors, Near field, Signal detection, Scattering, Atomic force microscopy, Optical microscopy, Data modeling, Numerical modeling
Apertureless scattering-type Scanning Near-field Optical Microscopy (s-SNOM) has been used to study the electromagnetic response of infrared antennas below the diffraction limit. The ability to simultaneously resolve the phase and amplitude of the evanescent field relies on the implementation of several experimentally established background suppression techniques. We model the interaction of the probe with a patch antenna using the Finite Element Method (FEM). Green's theorem is used to predict the far-field, cross-polarized scattering and to construct the homodyne amplified signal. This approach allows study of important experimental phenomena, specifically the effects of the reference strength, demodulation harmonic, and detector location.
KEYWORDS: Antennas, FSS based metamaterials, Wave propagation, Infrared radiation, High dynamic range imaging, Gold, Long wavelength infrared, Radio propagation, Reflectometry, Electromagnetism
We design, fabricate, and characterize a Frequency Selective Surface (FSS) with directional thermal emission and
absorption for long-wave infrared wavelengths (LWIR). The FSS consists of an array of patch antennas connected by
microstrips, the ensemble of which supports leaky-wave type modes with forward and backward propagating branches.
The branches are designed to intersect at 9.8 μm, and have a broadside beam with 20° FWHM at this wavelength. The absorption along these branches is near-unity. Measurement of the hemispherical directional reflectometer (HDR)
shows good agreement with simulation. The ability to control the spectral and directional emittance/absortpance profiles
of surfaces has significant applications for radiation heat transfer and sensing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.