The oxidation resistance of protective capping layers for extreme ultraviolet lithography (EUVL) multilayers depends on their microstructure. Differently prepared Ru-capping layers, deposited on Mo/Si EUVL multilayers, are investigated to establish their baseline structural, optical, and surface properties in an as-deposited state. The same capping layer structures are then tested for their thermal stability and oxidation resistance. The best performing Ru-capping layer structure is analyzed in detail with transmission electron microscopy (TEM). Compared to other Ru-capping layer preparations studied here, it is the only one that shows grains with preferential orientation. This information is essential to model and optimize the performance of EUVL multilayers.
Differently prepared Ru-capping layers, deposited on Mo/Si EUV multilayers, have been characterized using a suite of metrologies to establish their baseline structural, optical, and surface properties in as-deposited state. The same capping layer structures were tested for their thermal stability and oxidation resistance. Post-mortem characterization identified changes due to accelerated tests. The best performing Ru-capping layer structure was studied in detail with transmission electron microscopy to identify the grain microstructure and texture. This information is essential for modeling and performance optimization of EUVL multilayers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.