This article, which is based on the topology optimization theory, considered the lightweight design of large aperture reflectors. Firstly, the material selection is based on the low temperature environment and the low temperature infrared optical mechanical structure design principles. Then, by using the minimum deformation of the mirror surface as the objective function, mirror volume and rigid body displacement as design restraints, and imposing manufacturing constraints, a conceptual design of the mirror back with manufacturability was accomplished. Finally, by using the finite element analysis method to compare the performance of the topologically optimized mirror and the primal mirror, it shows that the topologically optimized mirror met the design requirements in terms of lightening effect and structural rigidity, and the surface figure met the requirements under the influence of gravity, which emphasizes the feasibility and practicality of topology optimization in the large aperture mirror’ design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.