Magnesium fluoride (MgF2) is a widely used optical window material in lasers. Laser-induced damage in MgF2 materials involves complex thermal-mechanical coupling issues. With the rapid development of high-power fiber laser technologies and application of optoelectronic countermeasures, it is necessary to investigate the damage mechanism of 1.06 μm high-power continuous-wave laser on MgF2 optical windows to clarify the laser damage threshold and factors influencing laser-irradiated MgF2 window mirrors. Therefore, based on the theory of heat conduction and elastic mechanics, a simulation study was conducted using the finite element method. First, based on the thermo-mechanical theory, established a thermo-mechanical damage model for a laser-irradiated MgF2 crystal. Second, we calculated the temperature, stress, and strain fields of single-crystal MgF2 material under the action of a 100 W / cm2 laser. When the laser was irradiated for 4.921 s, thermal stress-induced burst damage was observed, but no melting damage occurred. Finally, the impact of parameters such as the laser power density, spot size, and laser action time on the damage effect was discussed using the parametric scanning method. The calculation results showed that the aforementioned factors significantly impact the damaging effect. Moreover, under the same laser parameters, material burst due to thermal stress is expected to precede the melt damage.
Carrier evolution equation (continuity equation) of semi-conductor plays an essential role in simulation of laser interference and electrical damage induced by laser irradiation on charge coupled device (CCD). Solving the Poisson equation, which is coupled with the carrier evolution equation, is a necessary step to obtain the stable electronic field caused by doped atoms and the dynamic one caused by free carriers. In terms of carrier evolution simulation in high resolution-CCD, it is important to solve the Poisson equation promptly and efficiently. For this purpose, we adopt a boundary element method with convolution core combined with Gauss integral algorithm. In this method, we propose the pixel element model in which fast Fourier transform (FFT) is introduced so that the amount of calculation is greatly decreased compared with the finite difference method. In this approach, it is possible to simulate carrier evolution in high-resolution-CCD even on a common personal computer.
An experimental setup of mid-infrared Fe:ZnSe laser operating at room temperature has been established, which was end-pumped by a non-chain pulsed HF laser. The temperature has significant influence on the level lifetime of Fe:ZnSe laser. As the crystal temperature changes from 85 to 295 K, the level lifetime of Fe ions changes from 57 to 0.35 μs, it is important for matching the pump pulse width and the level lifetime. Electronic excitation HF laser with short pulsed width is a good pump source for Fe2+:ZnSe laser at room temperature. For the Fe2+:ZnSe crystal with size of 20×20mm, when the pumping spot diameters is lower than 9.2mm, the phenomenon of transversal parasitic oscillation could been suppressed effectively. At room temperature, the output energy of Fe2+:ZnSe reaches 294mJ, the slope efficiency is about 36%, and the optical to optical efficiency respecting to the pump energy is 34%.
Crystal thermal characteristic is a key factor to affect output laser property. In some applications, the facets of crystal will be contaminated by dust in the air, which will enhance the heat absorption of laser and cause local thermal unbalance. Therefore a novel crystal heat dissipation method is proposed in this paper. Crystal is mounted in a specially designed heat sink, heat conducts between the contacting surfaces of crystal and heat sink. Pump incident laser irradiates from the end facet of crystal. The end facet of crystal is cooling by convection heat transfer with flowing protect gas. The experiment device is established, the pump laser is Hydrogen Fluoride laser with the wavelength of 2.8μm, pulse energy of 600mJ, and repetition rate of 50Hz. The crystal is Fe: ZnSe with the dimension of 20mm× 20mm× 6mm. The beam quality is measured in the condition with and without heat sink for comparison, the results indicate that the heat dissipation method proposed in this paper is benefit for improving the beam quality.
High power TEA CO2 laser belongs to the gas laser with high-voltage (HV) pulse excitation. The strong electromagnetic interference (EMI) are generated mainly from the discharge circuit loop, the pulse spark switch and the HV supply when the laser works. It has a strong interference and destructive effect on the electronic equipments inside and outside the laser system. The mechanism analysis and experimental measurement were carried out in this paper. The shielding design on the HV supply, the main discharge circuit loop and the main control unit restrained the transmission of EMI effectively. The mains filters were designed to restrain the conducing EMI propagation path. As a sensitive device to EMI, the control system was shielded, isolated and mains filtered on hardware, anti-interference on software was designed to improve the ability of noise reduction. Experimental results demonstrated that reducing EMI intensity, shielding EMI, improving the hardware ability on noise suppression are the primary methods to retrain EMI and keep the hardware of laser control system from being destroyed, the anti-interference on software is a support and complement of hardware noise suppression, which improves the reliability of the laser system.
Diode-pumped alkali vapor lasers are famous in the field of laser for their significant advantages such as very high quantum efficiency (Cs 99.5%, Rb 98.1%, K 95.2%), good thermal management performance and excellent beam output quality etc. A rate equation model fully considering the spatial distributions of pumping light and oscillating light is established under the hypothesis of quasi-two-level energy system of DPALs in this paper. Meanwhile, expressions of threshold pumping power, mode-matching efficiency and output power and slop efficiency in low pumping and strong pumping, respectively, are obtained. Then, the influences of mode-matching efficiency on working performance of DPALs are discussed and analyzed. Results show that mode-matching efficiency mainly impacts on threshold pumping power, output power and slop efficiency in low pumping but that nearly has no effects in strong pumping. Therefore, this model benefits the further research of DPALs.
Kilowatts class diode-pumped Cs vapor laser (DPCL) has been realized and this kind of lasers have military applications potentially for its high output power with high efficiency. Pumped by a fiber coupled laser diode, the key operating parameters of a DPCL are studied, including the spot size of focused pumping light, pressure ratio of buffer gases, vapor cell length, temperature of Cs vapor and reflectivity of output coupler. The spot size is properly chosen in the consideration of both the intensity scalability and mode matching. Pressure ratio is optimized under a modest pressure of mixed gases of helium and ethane. Under the optimized pressure ratio, the Cs vapor can absorb the pumping energy and convert it into laser energy efficiently. Besides, the temperature and reflectivity are also optimized to operate the DPCL in optimum state. The results have significant instructions for the experimental design of DPCL.
The modified Bridgman method with heat field rotation was used to grow ε-polytype single crystals of pure and 1, 2 and 10 mass % S-doped GaSe or solid solution crystals GaSe1-xSx, x = 0.002, 0.091, 0.412. The interaction of ultrashort laser pulses of ∼ 100 fs duration at 800 nm and 2 μm with the grown crystals was studied at room temperature. Up to 3.4-fold advantage of S-doped crystals in limit pump intensity (no decrease in the transmission) was found under 800 nm pump at S-content increase up to 10 mass %. The advantage became a half less at 2 μm pump due to a decrease of two-photon absorption in pure GaSe crystals. The spectral dependence of transient absorption is recorded with 37 fs resolution and interpreted. It was ascertained that first observable damage of high quality crystals is caused by dissociation of submicrometer thick surface layer to initial elements and do not influence the frequency conversion efficiency until alloying of dissociated Ga. Local microdefects, multiphoton absorption and transient transmission processes are identified as key factors responsible for damage threshold.
Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.