Rapid progress in the AlGaN (Eg=3.4-6.2eV), 4H-SiC (Eg=3.2eV) and ZnMgO (Eg=2.8-7.9eV) material systems over the last five years has led to the demonstration of a number of opto-electronic devices. These wide energy band gap devices offer several key advantages for space applications, over conventional Si (Eg=1.1eV) based devices, such as visible-blind detection, high thermal stability, better radiation hardness, high breakdown electric field, high chemical inertness and greater mechanical strength. Furthermore, the shorter cut-off wavelength of these material systems eliminates the need for bulky and expensive optical filtering components mitigating risk and allowing for simpler optical design of instrumentation. In this paper, we report on the development at NASA/Goddard of ultra-sensitive, high quantum efficiency AlGaN and 4H-SiC Schottky barrier UV-EUV photodiodes, 4H-SiC UV single photon avalanche diodes, large format 256x256 AlGaN UV p-i-n photodiode arrays and recent progress in elemental substitution for p-type and enhanced n-type doping of ZnO.
We report our in-depth study of Cd-Zn-Te (CZT) crystals to determine an optimum pixel and guard band configuration for Hard X-ray imaging and spectroscopy. We tested 20x20x5mm crystals with 8x8 pixels on a 2.46mm pitch. We have studied different types of cathode / anode contacts and different pixel pad sizes. We present the measurements of leakage current as well as spectral response for each pixel. Our I-V measurement setup is custom designed to allow automated measurements of the I-V curves sequentially for all 64 pixels, whereas the radiation properties measurement setup allows for interchangeable crystals with the same XAIM3.2 ASIC readout from IDEAS. We have tested multiple crystals of each type, and each crystal in different positions to measure the variation between individual crystals and variation among the ASIC channels. We also compare the same crystals with and without a grounded guard band deposited on the crystal side walls vs. a floating guard band and compare results to simulations. This study was carried out to find the optimum CZT crystal configuration for prototype detectors for the proposed Black-Hole Finder mission, EXIST.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.