Ultrasound computed tomography (USCT) has the potential to detect breast cancer by measuring tissue acoustic properties such as speed-of-sound (SOS). Current USCT image reconstruction methods for SOS fall into two categories, each with its own limitations. Ray-based methods are computationally efficient but suffer from low spatial resolution due to neglecting scattering effects, while full-waveform inversion (FWI) methods offer higher spatial resolution but are computationally intensive, limiting their widespread application. To address these issues, a deep learning (DL)-based method is proposed for USCT breast imaging that achieves SOS reconstruction quality comparable to FWI while remaining computationally efficient. This method leverages the computational efficiency and high-quality image reconstruction capabilities of DL-based methods, which have shown promise in various medical image reconstruction problems. Specifically, low-resolution SOS images estimated by ray-based traveltime tomography and reflectivity images from reflection tomography are employed as inputs to a U-Net-based image reconstruction method. These complementary images provide direct SOS information (via traveltime tomography) and tissue boundary information (via reflectivity tomography). The U-Net is trained in a supervised manner to map the two input images into a single, high-resolution image of the SOS map. Numerical studies using realistic numerical breast phantoms show promise for improving image quality compared to naïve, single-input U-Net-based approaches, using either traveltime or reflection tomography images as inputs. The proposed DL-based method is computationally efficient and may offer a practical solution for enhancing SOS reconstruction quality, which could potentially improve diagnostic accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.