This paper reports the development of a VHF PECVD process at 40.68 MHz for deposition of device-grade nc-Si:H. It
further reports the evaluation of textured ZnO:Al films produced by hollow cathode sputtering as regards their suitability
to serve as a TCO substrate for a-Si:H / nc-Si:H tandem device fabrication. The tandem devices were produced using an
established VHF PECVD process at 100 MHz. Both VHF processes are capable of producing similar nc-Si:H material
based on their analysis using micro-Raman spectroscopy. For the tandem junction devices, a peak in device efficiency
was obtained at a Raman crystalline fraction of 50-52 % and a microstructure parameter of 0.60-0.68. A best tandem
cell efficiency of 9.9% was achieved on HC ZnO compared to 11.3% on a reference Type-U SnO2 substrate.
We report the catalyst-free growth of ZnO nanotips by metalorganic chemical vapor deposition (MOCVD) on various substrates, including c-sapphire, (100) Si, titanium, glass and SiO2. Structural, optical, and electrical properties of ZnO nanotips are investigated. ZnO nanotips are found to be single crystalline and oriented along the c-axis normal to the growth plane. The nanotips exhibit dominant free excitonic transition and enhanced luminescence efficiency with negligible deep-level emission. Controllable in situ Ga doping during MOCVD growth reduces the resistivity of ZnO nanotips. Selective growth of ZnO nanotips has been achieved on patterned Ti/r-Al2O3, SiO2/r-Al2O3, and silicon-on-sapphire (SOS) substrates. It provides the potential to integrate ZnO nanotips and ZnO epitaxial films on a single patterned substrate for various device applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.