We report on the design and development of a quantum backend for an optical ground station for space-based quantum communication and science experiments. The quantum backend will enable the Optical Communication Telescope Laboratory (OCTL) to establish links with quantum satellites in the future. We aim to test this quantum enabled ground station with upcoming satellite Quantum Key Distribution (QKD) missions. We present measurements of the ground station properties that are relevant for future quantum links. Specifically, we discuss the polarization disturbance imposed by the optical communication telescope and present mitigation strategies in the form of polarization control systems. In addition to the optical design, we also present an end-to-end QKD model that is used to guide the development.
KEYWORDS: Cameras, Space operations, Scintillation, Receivers, Laser communications, Laser communication terminals, Calibration, Short wave infrared radiation, Engineering, Control systems
The Deep Space Optical Communications (DSOC) project launched in October 2023 hosted by the Psyche spacecraft. The DSOC flight laser terminal will be periodically closing links starting a few weeks after launch and extending out to Mars ranges. The DSOC Engineering Model (EM) flight laser transceiver terminal was built to serve as a replica of the flight terminal in space to be integrated into an EM testbed at JPL. The EM testbed characterized the EM flight laser transceiver terminal under test conditions emulating deep space. These tests helped to understand acquisition, tracking, pointing and the bi-directional communications performance. The EM testbed includes a gravity offload structure and the Laser Test Evaluation Station (LTES) testbed that emulates the ground transmitter and receiver. The LTES testbed was developed at NASA/JPL to serve as a pseudo transmitter and receiver ground station for deep-space flight terminals. This paper will describe the EM testbed capabilities that provide calibrated uplink irradiances overfilling the 22 cm aperture, provides a zero-gravity environment, and characterizes the downlink beam. Atmospheric fading and additive background noise can be injected, while performing uplink/downlink communications characterization. The gravity offload is capable of injecting a disturbance spectrum with a hexapod system allowing for a range of spacecraft environments to be emulated. The LTES architecture can be expanded to allow for multiple flight terminals to be tested in parallel for future projects. Key DSOC validation and performance tests with the EM testbed are reported in this paper.
KEYWORDS: Space operations, Telescopes, Signal processing, Receivers, Transmitters, Laser safety, Interfaces, Sensors, Deep space optical communications, Actuators
The National Aeronautics and Space Administration’s (NASA) Deep Space Optical Communications (DSOC) payload, launched with the Psyche spacecraft on October 13, 2023, is facilitating an ongoing Technology Demonstration (TD) of Free-Space Optical Communications (FSOC), from beyond the earth-moon system. The DSOC Flight Laser Transceiver (FLT), can acquire a 1064 nm uplink laser from earth, and return a 1550 nm, Serially Concatenated Pulse Position Modulated (SCPPM) signal, to earth. The FLT uses a 22 cm diameter unobscured optical transceiver assembly, coupled to a 4 W average power laser transmitter, supplemented with actuators, sensors, electronics and software. A 5-7 kW average power, multi-beam 1064 nm uplink laser assembly integrated to the Optical Communications Telescope Laboratory (OCTL) near Wrightwood, CA serves as the Ground Laser Transmitter (GLT). The DSOC Ground Laser Receiver (GLR) at the Palomar Observatory, Hale telescope (operated by Caltech Optical Observatories), consists of a Superconducting Nanowire Single Photon Detector (SNSPD) array, connected to a ground signal processing assembly. Signal photon arrivals are detected and processed to extract information codewords at the GLR. A Mission Operations System (MOS) co-located with the Psyche Project Mission Operations Center, at the Jet Propulsion Laboratory (JPL), coordinates DSOC technology demonstration activities. This paper presents a system overview, mission description and operations architecture for the TD. Early results that include downlink at maximum downlink data-rate of 267 Mb/s from 0.37 Astronomical Units (AU) or 55 million kilometers are presented.
The Deep Space Optical Communication (DSOC) project will conduct its technology demonstration concurrently with NASA’s Psyche mission, which hosts the DSOC flight transceiver (FLT) on its spacecraft and will operate it over an approximate range of 0.05 to 3.0 AU. The DSOC Ground Laser Transmitter (GLT), located at the Jet Propulsion Laboratory’s Optical Communication Telescope Laboratory (OCTL) near Wrightwood, CA, has been developed to provide a high-power optical uplink beacon that serves as a line-of-sight FLT downlink pointing reference and delivers low rate (1.8 kbps) uplink command data to the FLT. In this paper we present an overview of the completed GLT and its subsystems: (i) the multi-beam Uplink Laser Assembly (ULA) capable of transmitting up to 7 kW of average power, (ii) the Uplink Data Formatter that modulates the ULA, (iii) the GLT Optics Assembly that manages the ULA high power output beams and couples them to the OCTL telescope, (iv) the Uplink Laser Safety Assembly that automatically avoids hazardous laser irradiation by shuttering the laser output, and (v) the custom-developed Monitor and Control software used to test and operate the entire system. We discuss various implementation and operational challenges, and review results from key system performance verification and operational tests, indicating the readiness of the Ground Laser Transmitter station to fulfill the DSOC technology demonstration objectives.
The Terabyte Infrared Delivery (TBIRD) technology demonstration commenced operations in June 2022 following the spacecraft launch in late May 2022. The Jet Propulsion Laboratory (JPL), Optical Communications Telescope Laboratory (OCTL), 1-meter diameter telescope was instrumented to serve as the ground station for TBIRD. The instrumentation was a combination of lasers and modem electronics supplied by the Massachusetts Institute of Technology Lincoln Laboratory (MITLL) along with optics, sensors, and an existing adaptive optics (AO) system. The AO was embedded in an existing Optical Ground Station (OGS-1) setup supporting NASA’s Laser Communications Relay Demonstration (LCRD). The transmitting and receiving optics for TBIRD were “threaded” around the OGS-1 optics without breaking configuration, and facilitated easy switching between LCRD and TBIRD operations with a few motorized actuators. In this paper we describe (i) the design and deployment of the ground station; (ii) the concept of operations and (iii) demonstration results.
KEYWORDS: Optical communications, Sensors, Space operations, Systems engineering, Asteroids, Error analysis, Receivers, Transmitters, Ka band, Signal attenuation
Deep-Space Optical Communications is a key emerging technology that is being pursued for high data-rate
communications, which may enable rates up to ten times more than current Ka-band technology. Increasing the
frequency of communication, from Ka-band to optical, allows for a higher data rate transfers. However, as the frequency
of communication increases, the beam divergence decreases. Less beam divergence requires more accurate and precise
pointing to make contact with the receiver. This would require a three-order-of-magnitude improvement from Ka-Band
(~ 1 mrad) to optical (~ 1 urad) in the required pointing. Finding an architecture that can provide the necessary pointing
capability is driven by many factors, such as allocated signal loss due to pointing, range to Earth, spacecraft disturbance
profile, spacecraft base pointing capability, isolation scheme, and detector characteristics. We have developed a suite of
tools to 1) flow down a set of pointing requirements (Error Budget Tool), 2) determine a set of architectures capable of
meeting the requirements (Pointing Architecture Tool), and 3) assess the performance of possible architecture over the
mission trajectory (Systems Engineering Tool). This paper describes the three tools and details their use through the
case study of the Asteroid Retrieval Mission. Finally, this paper details which aspects of the pointing, acquisition, and
tracking subsystem still require technology infusion, and the future steps needed to implement these pointing
architectures.
Mechanical resonators have been extensively used to provide vibration isolation for ground based, airborne, and spaceborne
payloads. At low frequency, the effectiveness of these isolation systems is determined mainly by designing a
mechanical oscillator with the lowest resonant frequency achievable. The Low Frequency Vibration Isolation Platform
(LFVIP) reduces the resonant frequency of the mechanical oscillators into the sub-hertz region to maximize the passive
isolation. This mechanical system, which has been expressly designed to isolate spacecraft vibrations from a compact
deep space optical communication terminal, is based on the Stewart platform topology. Furthermore, the LFVIP
provides tip/tilt functionality for acquisition and tracking of an optical beacon signal. An active control system is used
for the DC positioning of the platform and the damping of the resonance of the mechanical oscillator. A summary of
the LFVIP system, including analysis design, and preliminary results is presented.
A canonical deep space optical communications transceiver which makes synergistic use of advanced technologies to
reduce size, weight, power and cost has been designed and is currently under fabrication and test. This optical
transceiver can be used to retire risks associated with deep space optical communications on a planetary pathfinder
mission and is complementary to ongoing lunar & access link developments. Advanced technologies being integrated
into this transceiver include use of a single photon-sensitive detector array for acquisition, tracking and communications;
use of two-photon absorption for transmit beam tracking to vastly improve transmit/receive isolation; and a sub-Hertz
break frequency vibration isolation platform is used to mitigate spacecraft vibration jitter. This article will present the
design and current test results of the canonical transceiver.
A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely
pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth
(> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground
based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars
as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes
for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented
including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to
reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to
the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3
sigma) from anywhere in the solar system.
Tests at the 200-inch Hale Telescope on Palomar Mountain have demonstrated this telescope's ability to withstand considerable thermal stress, and subsequently produce remarkably unaffected results. During the day of June 29, 2005, the Hale telescope dome was left open, and the telescope was exposed to outside air and direct sunlight for 8 hours. During this time, portions of the telescope structure in the telescope's optical path experienced temperature elevations of 30 C, while the primary mirror experienced unprecedented heating of over 3 C. The telescope's measured blind pointing accuracy after this exposure was not noticeably degraded from the measurements taken before exposure. More remarkably, the telescope consistently produced stellar images which were significantly better after exposure of the telescope (1.2 arcsec) than before (1.6 arcsec), even though the conditions of observation were similar. This data is the first step in co-opting astronomical telescopes for daytime use as astronomical receivers, and supports the contention that deleterious effects from daytime exposure of the telescope can be held to an acceptable level for interleaved communications and astronomy.
A simplified laser communications (lasercom) system architecture, primarily for a deep-space flight transceivers, can be realized by decoupling the lasercom optical components from the host spacecraft using a disturbance-free platform (DFP) developed by Lockheed Martin Space System Company. Unlike conventional lasercom system architectures where a high bandwidth control loop is used to stabilize the optical line-of-sight in the presence of platform disturbance, the DFP package isolates the optical train from the high frequency platform jitter produced by the host. By preventing the vibration from coupling into the optics train, the need for a high bandwidth beam stabilization control loop (including fast steering mirror, detectors, controls and the associated relay optics) is eliminated with possible mass savings. Effective isolation of the platform jitter also enables the optical focal plane array to operate at a much longer integration time, thus enabling the use of either faint stars or a weak beacon as a pointing reference. This feature can allow the same lasercom system architecture to be employed for deep space and some near Earth applications, and can potentially enable deep space return signal pointing without the need of an uplink beacon.
Infrared (IR) Earth thermal image tracking has potential to enable optical communications throughout the solar system
and is a promising alternative to traditionally proposed laser beacon tracking. Image blurring due to finite receiver
aperture size introduces distortions to IR Earth image in the presence of Earth's non-uniform emissivity and reduces the
centroiding accuracy in identifying the center of the Earth. The impact is largest in the 0.5 to 2 AU range. We
demonstrate that a deconvolution algorithm can mitigate the effect of blurring associated with IR Earth non-uniformity
and improve centroiding edge detection accuracy.
KEYWORDS: Mars, Telescopes, Sensors, Space telescopes, Staring arrays, Signal detection, Signal processing, Line of sight stabilization, Optical filters, Space operations
NASA’s upcoming Mars Laser Communication Demonstration (MLCD) scheduled for the 2010-2011 time-frame is planning to use the Hale telescope at Palomar Mountain, California to receive the downlink. The optical links will be demonstrated in the presence of daytime sky backgrounds with the characteristic faint laser signal associated with transmission from deep space. A system level description for acquiring and tracking the laser downlink signal in order to achieve the desired communications performance is presented.
The pointing knowledge for the deep space optical communications should be accurate and the estimate update rate needs to be sufficiently higher to compensate the spacecraft vibration. Our objective is to meet these two requirements, high accuracy and update rate, using the combinations of star trackers and inertial sensors. Star trackers are very accurate and provide absolute pointing knowledge with low update rate depending on the star magnitude. On the other hand, inertial sensors provide relative pointing knowledge with high update rates. In this paper, we describe how the star tracker and inertial sensor measurements are combined to reduce the pointing knowledge jitter. This method is based on the 'iterative averaging' of the star tracker and gyro measurements. Angle sensor measurements are to fill in between the two gyro measurements for higher update rate and the total RMS error (or jitter) increases in RSS (Root-Sum-Squared) sense. The estimated pointing jitter is on the order of 150 nrad which is well below the typical requirements of the deep space optical communications. This 150 nrad jitter can be achieved with 8 cm diameter of telescope aperture. Additional expectations include 1/25 pixel accuracy per star, SIRTF class gyros (ARW = 0.0001 deg/root-hr), 5 Hz star trackers with ~5.0 degree FOV, detector of 1000 by 1000 pixels, and stars of roughly 9 to 9.5 magnitudes.
A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition, pointing and tracking. The transmitted beam width is nominally 200-μrad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller ~3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5-microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstration.
If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical "questions" more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed showing quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.
KEYWORDS: Cameras, Field programmable gate arrays, Signal processing, Imaging systems, Charge-coupled devices, CCD cameras, Logic, Image processing, Control systems, Process control
Commercially available cameras are not designed for the combination of single frame and high-speed streaming digital video with real-time control of size and location of multiple regions-of-interest (ROI). A new control paradigm is defined to achieve low-level camera control with high-level system operation. This functionality is achieved by defining the indivisible pixel read out operation on a per ROI basis with in-camera time keeping capability. This methodology provides a Random Access, Real-time, Event-driven (RARE) camera for adaptive camera control and is well suited for target tracking applications requiring autonomous control of multiple ROIs. This methodology additionally provides for reduced ROI read out time and higher frame rates compared to a predecessor architecture by avoiding external control intervention during the ROI read out process.
For high rate communications such as optical communications, tracking loss can result in substantial reduction of average data rate and the total data volume of the transmitted data. For optical communications, which transmits laser beam through atmosphere, atmospheric induced fades of the beacon signal can vary significantly as observed in ground-to-ground optical experiments. In this paper, we propose a new scheme of compensating the atmospheric induced fading effects using inertial sensors. By measuring the platform vibrations, the beacon movements on the Focal Plane Array can be deduced even if the beacon is lost due to fading. By avoiding the new cycle of reacquisition and tracking, high rate communication can be maintained. The allowable period of beacon fade depends on the inertial sensor noise characteristics and acquisition and tracking Field-Of-View. We will present the results of our analysis for the planned Altair UAV-to-Ground optical communications demonstrations using an accelerometer.
A robust acquisition, tracking and pointing (ATP) subsystem is being developed for the 2.5 Gigabit per second (Gbps) Unmanned-Aerial-Vehicle (UAV) to ground free-space optical communications link project. The demonstration will gather HDTV images of regions of geological interest (e.g. volcanic) and then downlink those images to ground receivers at a range of 50 km while the UAV is at an altitude of 18 km. With a 200 mW downlink laser at 1550 nm for a BER of 1E-9, the pointing requirements on the flight terminal are a jitter error of 19.5 urad and a bias error of 14.5 urad with a probability of pointing induced fades of 0.1 %. In order to mitigate the effect of atmospheric fades and deal with UAV flight and vibration uncertainties (relatively new craft) the ATP subsystem requirements have been set to a stringent level in order to assure success of the communication link. The design, analysis and development of this robust ATP subsystem will be described in this paper. The key innovations that have been developed to make the ATP subsystem robust are i) the application of inertial sensors to make the acquisition and tracking functions tolerant to atmospheric fades, ii) the usage of active exposure control to provide a 16 dB dynamic range on the Focal Plane Array (FPA) tracking window, and iii) the introduction of a second ultra wide field of view camera to assure acquisition of the ground beacon.
Communication links with multi-giga-bits per sec (Gbps) data-rates depicting both LEO-GEO and GEO-to-Ground optical communications were characterized in the laboratory. A 5.4 Gbps link, with a capability of 7.5 Gbps, was demonstrated in the laboratory. The breadboard utilized a 13 cm diameter telescope as the transmit aperture that simulates the LEO terminal. The receiver is a 30-cm telescope that simulates the GEO terminal. The objective of the laboratory breadboard development is to validate the link analysis and to demonstrate a multi-gigabit link utilizing off-the-shelf or minimally modified commercially available components (optics and opto-electronics) and subsystems. For a bit-error-rate of 1E-7, the measured required received signal is within 1 to 2 dB of that predicted by the link analysis.
This paper summarizes NASA/JPL progress on sub-microradian pointing system design. Sub-microradian pointing has been found to be critical for the deep space optical communications from earlier studies. The objective of current effort is to develop the needed technologies and demonstrate a sub-microradian pointing capability under simulated spacecraft vibrations. This is expected to establish the foundation for future deep space optical communication missions. The point system, once built, should be able to support optical communications anywhere within solar system for non-orbiting spacecraft. The proposed pointing system is based on high precision inertial sensors and large format focal plane arrays, which can operate under low intensity beacon sources such as stars. This design concept drastically deviates from the conventional design limited for short range, which assumes high signal level and quadrant detectors or small format focal plane arrays. We will present the architecture of the pointing system, pointing error analysis, and the progresses on the laboratory validations.
Precise Acquisition, Tracking and Pointing (ATP) remain a key issue in the use of free-space optical communication systems for deep space missions. The Optical Communications Group at the Jet Propulsion Laboratory is developing a vibration platform to assist with the development and characterization of an ATP system to be used for deep space optical communications. The vibration platform will provide a means for subjecting ATP systems to the vibration spectrum likely to be experienced while onboard a spacecraft. The platform consists of a 61 cm x 61 cm optical breadboard mounted on a ball bearing pivot that is driven by a single piezo-electric actuator (PZT). The PZT provides motion in a single axis, giving the platform approximately 200 mrad of angular motion with a bandwidth in excess of 100 Hz. When placed on the platform, the performance of ATP systems can be tested under several cases of vibration. This paper will discuss the physical properties of the vibration platform. A model for the system will be discussed and experimental performance data will be presented.
NASA/JPL has been developing technologies to accurately point a laser beam from deep space with sub-micro-radian precision for data transmission systems. A novel approach to achieve this goal is based on using high bandwidth inertial sensors to compensate for jitter caused by spacecraft vibrations. The use of high bandwidth inertial sensors promises to enable the implementation of laser communication links anywhere within the solar system and beyond. A functional demonstration of closed-loop accelerometer- assisted beacon tracking under simulated spacecraft vibration was undertaken, in order to validate innovative concepts, technologies, sub-systems and algorithms that achieve the sub-micro-radian pointing accuracy necessary for optical communication systems from deep space. The laboratory demonstration included integration of the complete acquisition, tracking, and pointing system with inertial sensors (e.g. accelerometers). Double integration, bias and initial velocity estimation algorithms were developed, verified and implemented. Accelerometer performance was characterized and integrated to the system. A laser beacon was mounted on a platform that simulates spacecraft vibrations. Vibrations were introduced into the beacon and were simultaneously sampled by the accelerometer. These signals were used to close the pointing loop. Closed loop tracking of the vibrating beacon was achieved using the accelerometer information interlaced with a slow-rate reference update (laser beacon centroids). This presentation will describe the details of the functional demonstration of accelerometer-assisted beacon tracking and pointing in a laboratory environment under simulated spacecraft vibration.
The opto-electronic receiver (detector and pre-amplifier) necessary to meet the demands of high capacity deep space missions is designed for a Mars-Earth optical communication link. The receiver requirements are driven by link performance (data rate, bit-error rate, margin), delivered power, pulse width, background signal, telescope quality, and atmospheric effects. Meeting these requirements becomes more challenging as the mission range and the demand for link capacity increases. In this article, the detector's characteristics (e.g. quantum efficiency, noise, gain, and diameter) are designed to address these various requirements. The receiver sensitivity's dependence on the background noise power and on the APD detector's characteristics is analyzed. The improvement in opto- electronic receiver sensitivity is quantified for improvements in APD quantum efficiency, ionization factor, and bulk dark current. It is also found that as the background signal increases the improvement on the receiver sensitivity from an improved detector is diminished due to the quantum noise limit. An opto-electronic receiver is designed based on a Silicon APD to meet the mission requirement of a PPM (M equals 256) 30 kbps data rate (BER of 10-5) link. Improvements to the APD detector are also studied to describe a design that would achieve over 50 kbps data rates for a Mars-Earth optical communication link.
This paper presents an overview of the preliminary design of both the flight and ground systems of the Optical Communication Demonstration and High-rate Link Facility which will demonstrate optical communication from the International Space Station to ground after its deployment in October 2002. The overview of the preliminary design of the Flight System proceeds by contrasting it with the design of the laboratory- model unit, emphasizing key changes and the rationale behind the design choices. After presenting the preliminary design of the Ground System, the timetable for the construction and deployment of the flight and ground systems is outlined.
A high data rate laser transmitter assembly (LTA) has been designed as the source for an optical free-space communication link between the International Space Station and the 1-meter Optical Communication Telescope Laboratory (OCTL) to be built at the Table Mountain Facility (TMF, Wrightwood, CA). the transmitter design concept uses a fiber-based master oscillator power amplifier (MOPA) configuration with an average output power of 200 mW at a 1550 nm transmit wavelength. This transmitter source is also designed to provide a signal at 980 nm to the silicon-based focal plane array for the point-ahead beam control function. This novel integration of a 980 nm boresight signal allows the use of silicon based imagers for the acquisition/tracking and point- ahead functions, yet permits the transmit signal to be at any wavelength outside the silicon sensitivity. The LTA, a sub- system of the Flight Terminal, has been designed to have a selectable data rate from 155 - 2500 Mbps in discrete steps. It also incorporates a 2.5 Gbps pseudo-random bit sequence (PRBS) generator for complete link testing and diagnostics. The design emphasizes using commercial off the shelf components (COTS).
Monolithic, multiple-wavelength VCSEL arrays have been obtained by using the surface-controlled enhancement and reduction of the MOCVD epitaxial growth rate to produce a periodic and repeatable grading of the resonance wavelength over a span of greater than 30 nm. Room temperature, electrically-injected, cw lasing has also been achieved with a wavelength span of greater than 20 nm. We show here both the enhancement and the reduction of the growth rate of the entire VCSEL structure and demonstrate the controlled variation of the VCSEL lasing wavelength over a widened spectral range by exploiting both of these effects. Using the same growth techniques, wavelength-selective, resonance-enhanced photodetector arrays with closely-matched resonance wavelengths can be monolithically integrated on the same epilayer structure. We demonstrate the repeatability of this technique using different arrays from the same growth run.
Recent advances in the design of high-speed optical switches and transceivers for a reconfigurable, spatially-multiplexed optical interconnection network are described. Monolithic switches based on the integration of vertical-cavity surface-emitting lasers with heterojunction bipolar transistors and photodetectors have achieved switching operation at a data rate of close to 1 Gb/s. Optical transmission experiments through fibers have been carried out using these switches at a data rate between 650 Mb/s and 1 Gb/s. For future improvements in performance, the photonic and electronic elements should be separately integrated and independently optimized. To facilitate photonic integration, VCSELs and resonance-enhanced photodetectors have been integrated on the same substrate.
We review our progress in the development of an optical interconnect technology consisting of optical and optoelectronic switches that integrate vertical-cavity surface-emitting lasers (VCSELs) with other photonic and electronic components, including heterojunction phototransistors (HPTs) and heterojunction bipolar transistors (HBTs). We describe a reconfigurable multi-access optical network architecture that allows many high speed electronic processors to simultaneously communicate with each other and with other shared resources, and for its implementation, an integrated optoelectronic switching technology that combines the functions of an optical transceiver and a spatial routing switch. The network provides parallel and dynamically reconfigurable optical interconnections between nodes, as well as optoelectronic interfaces to each processor. By converting data between the electrical and optical formats, these multi-functional switches can receive or transmit optical data, or to bypass and re-route it to another node. Optical switching has been demonstrated experimentally at a data rate of 200 Mb/s, and electrical-to-optical data conversion has been achieved at a data rate of > 500 Mb/s.
The high frequency behavior of vertical-cavity surface-emitting lasers (VCSELs) has been investigated. The small-signal optical modulation response and the impedance characteristics of several different multiple-quantum-well (MQW) VCSEL device structures have been measured and modeled as a function of dc bias and frequency in the 0.13- to 20-GHz range. An equivalent circuit model describing the intrinsic and extrinsic response of the VCSEL was derived, and a good fit to the experimental impedance and modulation data has been achieved. The extrinsic model yields the VCSEL electrical transfer function from which the 3 dB corner frequency (attributed to RLC parasitics) can be evaluated. In some of the devices measured, the 3 dB cutoff frequency is higher than the 3 dB optical modulation bandwidth measured. It is demonstrated that the electrical circuit parasitics alone are not the limiting factor in obtaining the maximum modulation bandwidth from these devices. It is found that the output power roll-over effect due to thermal heating is also a significant limit in obtaining higher optical modulation frequencies. By fitting the model of the intrinsic modulation response to the measured data a maximum resonant relaxation frequency of over 22 GHz is obtained (for a device with an 11-micrometers -diameter active region). It is also found that the amplitude of the modulation in these MQW devices is significantly reduced as the current increases much above threshold, and that this attenuation of the amplitude is explained by the frequency roll-off of the electrical RC parasitics.
Hamid Javadi, Jeff Barner, Javier Bautista, Kul Bhasin, J. Bowen, Wilbert Chew, Chris Chorey, Marc Foote, B. Fujiwara, A. Guern, Brian Hunt, Regis Leonard, Gerry Ortiz, Daniel Rascoe, Robert Romanofsky, Richard Vasquez, Paul Wamhof
A low-noise microwave receiver downconverter utilizing thin-film high-critical-temperature superconducting (HTS) passive circuitry and semiconductor active devices has been developed for use in space. It consists of an HTS pre-select filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. The downconverter converts a 200 MHz wide band centered around 7.35 GHz to a band centered around 1.0 GHz. When cooled to 77 K, the downconverter plus cables inside a cryogenic refrigerator produced a noise temperature measured at the refrigerator port of approximately 50 K with conversion gain of 18 dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.