The Zwicky Transient Facility (ZTF) is a next-generation, optical, synoptic survey that leverages the success of the Palomar Transient Factory (PTF). ZTF has a large science focal plane (SFP) that needs to be aligned such that all portions of the CCDs are simultaneously placed in focus to optimize the survey’s efficiency. The SFP consists of 16 large, wafer-scale science CCDs, which are mosaicked to achieve 47 deg2 field of view. The SFP is aligned by repositioning each CCD based on the measured height map, which is a map of the camera’s z position at which each portion of the CCD is in focus. This height map is measured using on-sky stellar images in order to recreate the optical path that will be used throughout the survey. We present our technique for placing the SFP in focus, which includes two different methods to measure the height map of the SFP. The first method measures the height at which a star is in focus by fitting a parabola to each star’s photometric width as the star is moved in and out of focus. The second method measures the height by decomposing a defocused star into its image moments. We will discuss the strengths and limitations of each method and their outputs. By repositioning the CCDs, we were able to reduce the standard deviation of the height map from 33 to 14microns, which improved the survey’s speed by ∼ 81%.
The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.