The preparations are ongoing at PANTER, ESA, cosine and Media Lario to perform complex opto-thermo-mechanical tests of the two full scale 1/6th sectors of the final ATHENA mirror assembly structure produced by the potential ATHENA primes Airbus Defence and Space and Thales Alenia Space. For these tests a set of three SPO MMs have been produced following the flight configuration. The MMs will be incorporated into the full scale 1/6th sectors to measure the impact of thermal gradients on the thermoelastic deformation of the structure and therefore the HEW performance. A description of the tests is presented here.
PANTER is also involved in the development, testing, and fabrication of the mirror adapter structure (MAS) to support the 2.6-m diameter ATHENA mirror assembly module demonstrators (MAMD) during the planned x-ray tests at XRCF. A description of the PANTER tests and results will be presented in this paper together with a short overview of the MAS MGSE for XRCF.
The Einstein Probe (EP) is a mission of the Chinese Academy of Sciences (CAS) dedicated to time-domain high-energy astrophysics. Its primary goals are to discover high-energy transients and monitor variable objects. The ESA Science Programme Committee (SPC) approved on 19 June 2018 the participation of ESA to the CAS EP mission as a mission of opportunity. Among other elements, CAS has requested ESA participation for the provision of the mirror modules of the follow-up x-ray telescope (FXT).
FXT is a pair of Wolter-I telescopes operating in the 0.5-10 keV energy range, inheriting the design from eROSITA [2][3]. It provides field of view of about 1 deg diameter. The source localization error will be of 5-15 arcsec depending on the source strength [1]. The FXT is responsible for the quick follow-up observations of the triggered sources and will also observe other interested targets during the all-sky survey at the rest time.
Three FXT mirror modules were produced: structural and thermal model (STM), qualification model (QM) and flight model (FM). Media Lario could leverage on the manufacturing and integration infrastructure still available at its premises from the eROSITA programme [3][4], including the complete set of 54 mandrels needed for the mirror repliforming, property of MPE.
Media Lario produced and integrated the FXT mirror modules, each comprising 54 nested repliformed mirror shells; Max-Planck Institute (MPE) conducted the x-ray optical tests at the PANTER facility, for the acceptance of all the different models. This efficient collaboration enabled the on-time and in-quality delivery of the FXT mirror modules.This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.
An open question in the measurement of X-ray optics for telescopes in space is what the point spread function (PSF) looks like in orbit and what is the focal length for an infinite source distance. In order to measure such a PSF, a parallel X-ray beam with a diameter of several centimeters to meters is needed.
For this purpose it is studied of how to collimate the X-rays using a zone plate. Furthermore, a configuration study is presented to characterize X-ray optics with such a collimated beam at the PANTER X-ray test facility. In particular, estimations for segmented optics for future X-ray missions such as ATHENA+ with a focal length of 10m to 20m are presented.
The development and calibration of eROSITA mirror modules is supported by continuous measurements at the X-ray test facility PANTER. To obtain comparable measurement results after each new integration robust alignment procedures are needed to place the mirror module on the optical axis.
Here we present the different methods that we use to align eROSITA like mirror modules. One method uses the symmetry of single reflection images, another one is based on a symmetry of the intensity distribution, and the last one on the symmetry of the half energy width (HEW).
MPE will provide the X-ray Survey Telescope eROSITA for the Russian Spektrum-Roentgen-Gamma Mission. The mirror system consists of a compact bundle of seven co-aligned mirror modules with a focal length of 1600 mm and 54 nested mirror shells each. The 61 arcmin field-of-view (FoV) will yield a high grasp of about 1000 cm2deg2 around 1 keV. An angular resolution of 15 arcsec HEW on-axis (resulting in an average angular resolution of ~26 arcsec HEW over the field-of-view and ~30 arcsec including all optical and spacecraft error contributions) will help distinguish point sources from extended emission of galaxy clusters which are relevant for cosmological studies. During a four year allsky survey eROSITA will generate a new rich database of X-ray sources. In a second phase of the mission eROSITA will also perform pointed observations.
After a mirror development program the integration of flight mirror modules started in early 2011. Currently, the manufacturing of flight modules is ongoing and some of the partially integrated ones have already been X-ray tested. Calibration of completed mirror modules will start end of 2012. Parallel to the X-ray mirrors we have developed an X-ray baffle to suppress stray light from single reflections. It consists of precisely shaped and welded concentric Invar foils which will be mounted on top of each mirror module and aligned by optical means.
We report on the design and the mirror development program including the X-ray baffle and present the latest results from X-ray measurements.
View contact details