While the unique spectral information associated with chemical and biological molecules within the terahertz frequency
regime (~ 3.0-3.0 millimeters) motivates its use for practical sensing applications, limiting factors at the macroscale
(weak spectral absorption, broad line widths and masking geometrical effects introduced by the samples) provides
motivation for man-engineered sensing materials that allow for the transduction of the spectral information about target
molecules from the nanoscale. This brief letter will overview work being performed by our research group to define
molecular-level functionality that will be useful for realizing "THz/IR-sensitive" materials. Here the goal is to define
switchable molecular components that when incorporated into larger DNA-based nanoscaffolds lead to THz and/or IR
regime electronic and/or photonic material properties that are dictated in a predictable manner by novel functionality
paradigms. In particular, theoretical modeling and design studies are being performed to engineer organic and biological
switches that can be incorporated into DNA-based architectures that enable the precise extraction of nanoscale
information (e.g., composition, dynamics, conformation) through electronic/photonic transformations to the macroscale.
Hence, these studies seek to define new spectral-based sensing modalities useful for characterizing bio-molecules
A portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is developed to
measure the total weight, the distribution of weight of vehicle in motion (the weights of left front, right front, left rear
and right rear wheels respectively), the distance of wheels axles and distance between left and right wheels. Currently the
speed of vehicle to be tested can be up to 15 mph, the full scope of measurement for this system is 4000 lbs, and the
static sensitivity of sensor head is 20 lbs. This system has been tested respectively at Stevens' campus and Army base.
Compared to other schemes, our method has a number of advantages such as immune to electromagnetic interference,
high repeatability, lightweight, low power consumption, high sensitivity to dynamic strain caused by load of vehicles in
high-speed. The accuracy of whole system can be improved by simulating the mathematical model of sensor heads and
improving the quality of manufacture as well as the calibration condition in the future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.